Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T06:33:52.406Z Has data issue: false hasContentIssue false

Electrochemical Characterization of La2-xPrxNiO4+x for Application as Cathodes in Intermediate Temperature SOFCs

Published online by Cambridge University Press:  26 February 2011

Gun Tae Kim
Affiliation:
[email protected], University of Houston, Chemistry, 136 Fleming Building, Houston, TX, 77204-5003, United States
Allan J Jacobson
Affiliation:
[email protected], University of Houston, Department of Chemistry, 136 Fleming Bldg., Houston, TX, 77204-5003, United States
Get access

Abstract

The electrochemical properties of perovskite-type materials, Ln2NiO4+δ (Ln = La, Pr) as cathodes on Ce0.9Gd0.1O3 (CGO) and YSZ electrolytes were studied from 400 to 700 °C under different oxygen partial pressures (pO2 = 0.01-1 atm) by using AC impedance spectroscopy. These oxide electrodes yielded lower area specific resistance (ASR) compared to manganite perovskites. Ln2NiO4+δ (Ln = La, Pr) on CGO showed similar electrochemical performance though La2NiO4 (LNO) has a smaller ASR than Pr2NiO4 (PNO). The polarization resistance of LNO on YSZ was 2 orders higher than that on CGO. The interfacial resistance between the electrode and electrolyte was much smaller for LNO on CGO than for LNO on YSZ.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minh, N. Q., J. Am. Ceram. Soc. 76, 563 (1993).Google Scholar
2. Kharton, V. V., Yaremchenko, A. A., Shaula, A. L., Patrakeev, M. V., Naumovich, E. N., Logvinovich, D. I., Frade, J. R., and Marques, F. M. B., J. Solid State Chem. 177, 26 (2004).Google Scholar
3. Read, M. S. D., Islam, M. S., Watson, G. W., and Hancock, F. E., J. Mater. Chem., 11, 2597 (2001).Google Scholar
4. Boehm, E., Bassat, J. M., Steil, M. C., Dordor, P., Mauvy, F., and Grenier, J. C., Solid State Sciences, 5, 973 (2003).Google Scholar
5. Yaremchenko, A. A., Kharton, V. V., Patrakeev, M. V., and Frade, J. R., J. Mater. Chem. 13, 1136 (2003).Google Scholar
6. Mauvy, F., Bassat, J. M., Boehm, E., Manand, J. P., Dordor, P., and Grenler, J. C., Solid State Ionics 158, 17 (2003).Google Scholar
7. Rice, D. E. and Buttrey, D. J., J. Solid State Chem. 105, 197 (1993).Google Scholar
8. Allancon, C., Odier, P., Bassat, J. M., and Loup, J. P., J. Solid State Chem. 131, 167 (1997).Google Scholar
9. Mauvy, F., Lalanne, C., Bassat, J. M., Grenier, J. C., Zhao, H., Huo, L., and Stevens, P., J. Electrochem. Soc., 153(8), A1547 (2006).Google Scholar
10. Mauvy, F., Lalanne, C., Bassat, J. M., Grenier, J. C., Zhao, H., Dordor, P., and Stevens, Ph., J. Eur. Ceram. Soc., 25, 2669 (2005).Google Scholar
11. Pechini, M. P., US. Patent / 3.330.697 (1967).Google Scholar
12. Mizusaki, J., Amano, K., Yamauchi, S., Fueki, K., Solid State Ionics 22, 313 (1987).Google Scholar
13. Sievert, E., Hammouche, A., and Kleitz, M., Electrochim. Acta, 40, 1741 (1995).Google Scholar
14. Bassat, J. M., Boehm, E., Grenier, J. C., Mauvy, F., Dordor, P., and Pouchard, M., Fifth European Solid Oxide Fuel Cell Forum, (2002) 586.Google Scholar