Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T23:14:42.859Z Has data issue: false hasContentIssue false

Electrochemical Atomic-Layer Epitaxy: Electrodeposition of III-V and II-VI Compound Semiconductors

Published online by Cambridge University Press:  21 February 2011

Travis L. Wade
Affiliation:
Department of Chemistry, University of Georgia, Athens, Georgia30602
Billy H. Flowers Jr
Affiliation:
Department of Chemistry, University of Georgia, Athens, Georgia30602
Raman Vaidyanathan
Affiliation:
Department of Chemistry, University of Georgia, Athens, Georgia30602
Kenneth Mathe
Affiliation:
Department of Chemistry, University of Georgia, Athens, Georgia30602
Clinton B. Maddox
Affiliation:
Department of Physics, University of Georgia, Athens, Georgia30602
Uwe Happek
Affiliation:
Department of Physics, University of Georgia, Athens, Georgia30602
John L. Stickney
Affiliation:
Department of Chemistry, University of Georgia, Athens, Georgia30602
Get access

Abstract

Electrochemical atomic-layer epitaxy (EC-ALE) is an approach to electrodepositing thin-films of compound semiconductors. It takes advantage of underpotential deposition (UPD), deposition of a surface limited amount (a monolayer or less) of an element at a potential less negative than bulk deposition, to form a thin-film of a compound--one atomic layer at a time. Ideally, the 2-D growth mode should promote epitaxial deposition.

Many II-VI and a few III-V compounds have been formed by EC-ALE. TI-VI films such as CdSe, CdS, and CdTe have been successfully formed. In addition, deposition of III-V compounds of InAs and InSb are being explored, along with initial studies of GaAs deposition. Depositions of the I-VI systems are better understood so this report will focus on the III-V's, particularly InAs and InSb.

Building compounds an atomic layer at a time lends electrochemical-ALE to nanoscale technology. Deposited thickness ranged from a few nanometers to a few hundred. The films are typically characterized by atomic-force microscopy (AFM), X-ray diffraction (XRD), electron microprobe analysis (EPMA) and ellipsometry. InAs deposits are also characterized by infrared reflection absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fulop, G. F. and Taylor, R. M., Ann. Rev. Mater. Sci., 15, p. 197 (1985).Google Scholar
2. Rajeshwar, K., Adv. Mater., 4, p. 23 (1992).Google Scholar
3. Hodes, G., Sol. Energy Mater., 32, p. 323 (1994).Google Scholar
4. Pandey, R. K., Sahu, S. N. and Chandra, S., Handbook of Semiconductor Electrodeposition, Vol. 5, Marcel Dekker, Inc., New York, (1996).Google Scholar
5. Gobrecht, H., Liess, H. D., and Tausend, A., Ber. Bunsenges. Phys. Chem, 67, p. 930 (1963).Google Scholar
6. Hodes, G., Manassen, J., and Cahen, D., D. Nature, 261, p. 403 (1976).Google Scholar
7. Panicker, M. P. R., Knaster, M., and Kroger, F. A., J. Electrochem. Soc., 125, p. 566 (1978).Google Scholar
8. Chandra, S. and Khare, N., Semicond. Sci. Technol, 2, p. 220 (1987).Google Scholar
9. Gao, Y. K., A. Han, Z., Lin, Y. Q., Zhao, Y. C. and Zhang, J. D., Thin Solid Films, 232, p. 278 (1993).Google Scholar
10. Gao, Y., Han, A., Lin, Y., Zhao, Y. and Zhang, J., J. Appl. Phys., 75, p. 549 (1994).Google Scholar
11. Murali, K. S., Subramanian, V., Rangarajan, N., Lakshmanan, A. S. and Rangarajan, S. K., Journal of Materials Science-Materials in Electronics, 2, p. 149 (1991).Google Scholar
12. Ortega, J. and Herrero, J., J. Electrochem. Soc., 136, p. 3388 (1989).Google Scholar
13. Sahu, S. N., J. Mater. Sci. Lett., 8, p. 533 (1989).Google Scholar
14. Sahu, S. N., J.Mater. Sci., 3, p. 102 (1992).Google Scholar
15. Sahu, S. N., Journal of Materials Science-Materials in Electronics, 3, p. 102 (1992).Google Scholar
16. Mengoli, G., Musiani, M. M. and Paolucci, F., J. Electroanal. Chem., 332, p. 199 (1992).Google Scholar
17. Cattarin, S., Musiani, M., Casellato, U., Rossetto, G., Razzini, G., Decker, F. and Scrosati, B., J. Electrochem. Soc., 142, p. 1267 (1995).Google Scholar
18. Dalchiel, E., Cattarin, S., Musiani, M., Casellato, U., Guerriero, P., Rossetto, G., J. Electroanal. Chem., 418, p. 83 (1996)Google Scholar
19. Gregory, B. W., Suggs, D. W. and Stickney, J. L., J. Electrochem. Soc., 138, p. 1279 (1991).Google Scholar
20. Huang, B. M., Colletti, L. P., Gregory, B. W., Anderson, J. L. and Stickney, J. L., J. Electrochem. Soc., 142, p. 3007 (1995).Google Scholar
21. Colletti, L. P., Flowers, B. H. Jr and Stickney, J. L., J. Electrochem. Soc., 145, p. 1442 (1998).Google Scholar
22. Colletti, L. P. and Stickney, J. L., J. Electrochem. Soc., 145, p. 3594 (1998).Google Scholar
23. Demir, U. and Shannon, C., Langmuir, 10, p. 2794 (1994).Google Scholar
24. Aloisi, G. D., Cavallini, M., Innocenti, M., Foresti, M. L., Pezzatini, G. and Guidelli, R., J. Phys. Chem., 101, p. 4774 (1997).Google Scholar
25. Nandhakumar, I. and Hayden, B., J. Phys. Chem., 102, p. 4897 (1998).Google Scholar
26. Goodman, C. H. L. and Pessa, M. V., J. Appl. Phys., 60, R65 (1986).Google Scholar
27. Atomic Laver Growth and Processing; Kuech, T. F., Dapkus, P. D. and Aoyagi, Y., Editors, Vol. 222, p. 360, Materials Research Society, Pittsburgh, (1991).Google Scholar
28. Bedair, S., in Atomic Layer Epitaxy; Bedair, S., Editor, p.304, Elsevier, Amsterdam, (1993).Google Scholar
29. Kolb, D. M., in Physical and Electrochemcial Properties of Metal Monolayers on Metallic Substrates; Kolb, D. M., Editor, Vol. 11, p. 125, John Wiley, New York, (1978).Google Scholar
30. Adzic, R. R, in Advances in Electrochemistry and Electrochemical Engineering; Gerishcher, H., and Tobias, C. W., Editors, Vol. 13, p. 159, Wiley-Interscience, New York, (1984).Google Scholar
31. Gewirth, A. A. and Niece, B. K., Chem. Rev., 97, p. 1129 (1997).Google Scholar
32. Jung, G., and Rhee, C. K., J. Electroanal. Chem. 438, p. 277 (1977).Google Scholar
33. Powder Diffraction File Alphabetical Index, Inorganic Phases; McClune, W. F., Editor, Card Numbers: InAs, (15-869); In, (5-642); Au, (4-784), JCPDS International Center for Diffraction Data, Swarthmore, PA, (1992).Google Scholar
34. Wade, T. L., Ward, L. C., Maddox, C. B., Happek, U., and Stickney, J. L., Electrochemical and Solid-State Letters, 2, p. 616 (1999).Google Scholar
35. Seeger, K., in Semiconductor Physics p. 40, Springer Series in Solid State Science, Springer Verlag, New York, (1982).Google Scholar
36. Alvarez-Fregoso, O., Mendoza-Alvarez, J. G., and Zelaya-Angle, O., J. Appl. Phys., 82, p. 708 (1997).Google Scholar
37. Levy, L., Ingert, D., Feltin, N. and Pileni, M. P., Journal of Crystal Growth, 184/185, p. 377 (1998).Google Scholar
38. Buuren, T. van, Dinh, L. N., L. Chase, L., Siekhaus, W. J., and Terminello, L. J., Phys. Rev. Lett., 80, p. 3803 (1998).Google Scholar