Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:10:57.755Z Has data issue: false hasContentIssue false

Electrocatalytic Evaluation of Shape-Dependent Platinum Nanocatalysts towards Methanol Oxidation Reaction

Published online by Cambridge University Press:  15 January 2013

Hong Wu
Affiliation:
Materials Science & Engineering Program and State University of New York at Binghamton, Binghamton, New York 13902
Yuxuan Wang
Affiliation:
Materials Science & Engineering Program and State University of New York at Binghamton, Binghamton, New York 13902
Nathan Porter
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Cuikun Lin
Affiliation:
Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069
Jiye Fang*
Affiliation:
Materials Science & Engineering Program and State University of New York at Binghamton, Binghamton, New York 13902 Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Get access

Abstract

Electrocatalytic activity and stability of platinum nanocubes and nanospheres were comparatively investigated towards methanol oxidation reaction. The results indicate that the {100}-bounded Pt nanocubes exhibit not only higher catalytic activity but also higher stability compared with the mixed crystallographic facet-terminated Pt nanospheres.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antolini, E., Salgado, J. R. C. and Gonzalez, E.R., J. Electroanal. Chem. 580 (1), 145154 (2005).CrossRefGoogle Scholar
Gurau, B. and Smotkin, E.S., J. Power Sources. 112 (2), 339352 (2002).CrossRefGoogle Scholar
Razmi, H., Habibi, E. and Heidari, H., Electrochim. Acta. 53 (28), 81788185 (2008).CrossRefGoogle Scholar
Oh, J.-G., Lee, C.-H. and Kim, H., Electrochem. Commun. 9 (10), 26292632 (2007).CrossRefGoogle Scholar
Tian, J., Sun, G., Jiang, L., Yan, S., Mao, Q. and Xin, Q., Electrochem. Commun. 9 (4), 563568 (2007).CrossRefGoogle Scholar
Burda, C., Chen, X., Narayanan, R. and El-Sayed, M.A., Chem. Rev. 105 (4), 10251102 (2005).CrossRefGoogle Scholar
Maillard, F., Eikerling, M., Cherstiouk, O.V., Schreier, S., Savinova, E. and Stimming, U., Faraday Discuss. 125, 357377 (2004).CrossRefGoogle Scholar
Solla-Gullon, J., Vidal-Iglesias, F.J., Lopez-Cudero, A., Garnier, E., Feliu, J.M. and Aldaz, A., PCCP 10 (25), 36893698 (2008).CrossRefGoogle Scholar
Narayanan, R. and El-Sayed, M.A., J. Am. Chem. Soc. 126 (23), 71947195 (2004).CrossRefGoogle Scholar
Narayanan, R. and El-Sayed, M.A., Nano Lett. 4 (7), 13431348 (2004).CrossRefGoogle Scholar
Xu, D., Liu, Z., Yang, H., Liu, Q., Zhang, J., Fang, J., Zou, S. and Sun, K., Angew. Chem. Int. Ed. 48 (23), 42174221 (2009).CrossRefGoogle Scholar
Zhang, J. and Fang, J., J. Am. Chem. Soc. 131 (51), 1854318547 (2009).CrossRefGoogle Scholar
Sheppard, S.-A., Campbell, S. A., Smith, J. R., Lloyd, G. W., Walsh, F. C. and Ralph, T. R., Analyst. 123 (10), 19231929 (1998).CrossRefGoogle Scholar
Solla-Gullon, J., Rodriguez, P., Herrero, E., Aldaz, A. and Feliu, J.M., PCCP 10 (10), 13591373 (2008).CrossRefGoogle Scholar
Garsany, Y., Baturina, O. A., Swider-Lyons, K. E. and Kocha, S. S., Anal. Chem. 82 (15), 63216328.CrossRefGoogle Scholar
Rhee, C.K., Kim, B.-J., Ham, C., Kim, Y.-J., Song, K. and Kwon, K., Langmuir. 25 (12), 71407147 (2009).CrossRefGoogle Scholar