Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:49:18.609Z Has data issue: false hasContentIssue false

Electrical Instability Suppression in 4H-SiC Power MESFETs

Published online by Cambridge University Press:  11 February 2011

J. B. Tucker*
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309, USA
R. A. Beaupre
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309, USA
A. P. Zhang
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309, USA
J. L. Garrett
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309, USA
L. B. Rowland
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309, USA
E. B. Kaminsky
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309, USA
J. W. Kretchmer
Affiliation:
General Electric Global Research Center, Niskayuna, NY 12309, USA
A. Vertiatchikh
Affiliation:
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
L. F. Eastman
Affiliation:
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
A. F. Allen
Affiliation:
Lockheed Martin NE&SS-Radar Systems, Syracuse, NY13221, USA
B. Edward
Affiliation:
Lockheed Martin NE&SS-Radar Systems, Syracuse, NY13221, USA
*
* Ph: (518) 387–6096 e-mail: [email protected] Fax: (518) 387–5997
Get access

Abstract

SiC has attracted great interest for high power microwave applications because of its superior intrinsic properties compared to Si and GaAs. Steady demonstrations of increasingly higher power handling capability have been achieved in recent years. However, SiC MESFETs still suffer from significant drain current degradation under RF operation or long-term DC stress. This degradation can be recovered after long periods of relaxation or immediately by illumination under UV light, which is indicative of a trapping effect. The origin of this effect has been attributed to either electron trapping at the device surface between the gate and drain or trapping at the epi-substrate interface due to the presence of electrically active contaminants in the bulk. Newly available “high purity” (non-vanadium compensated) bulk 4H semi-insulating SiC substrates were used in an effort to limit the effect of V-related deep level trapping at the substrate/epilayer interface. To investigate the effect of V on SiC MESFET performance, we compare similar devices fabricated on V compensated, and “high-purity” 4H-SiC substrates without intentional V doping. Presence or absence of V is confirmed by secondary ion mass spectrometry (SIMS) analysis. Pulsed I-V measurements as well as current- and capacitance-based deep level transient spectroscopy (DLTS) measurements were performed to assess trapping activation energy and density. An assessment of device performance and stability for each substrate type is made using RF load-pull measurements and device long-term DC bias stressing at temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cooper, J. A. Jr, “Opportunities and technical strategies for silicon carbide device development”, Mater. Sci. Forum, 389–393, 15 (2002).Google Scholar
2. Trew, R. J., “Wide bandgap Semiconductor Transistors for Microwave Power Amplifiers”, Microwave, 46 (2000).Google Scholar
3. Morse, A. W., “Application of silicon carbide to high power microwave devices and systems”, Proc. IEEE MTT-S Int. Microwave Symp., 5356 (2000).Google Scholar
4. Clarke, R. C. and Palmour, J. W., “SiC Microwave Power Technologies”, Proc. IEEE., 90, 987 (2002).Google Scholar
5. Morvan, E., Noblanc, O., Dua, C., and Brylinski, C., “SiC Microwave Power Devices”, Mater. Sci. Forum, 353–356, 669 (2001).Google Scholar
6. Hilton, K. P., Uren, M. J., Hayes, D. G., Wilding, P. J., Johnson, H. K., Guest, J. J., and Smith, B. H., “High power microwave SiC MESFET technology”, Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, EDMO, 71–74 (1999).Google Scholar
7. Allen, S. T., Pribble, W. L., Sadler, R. A., Alcorn, T. S., Ring, Z., and Palmour, J. W., “Progress in high-power SiC microwave MESFETs”, Proc. IEEE MTT-S Int. Microwave Symp., 321 (1999).Google Scholar
8. Zhang, A. P., Rowland, L. B., Kaminsky, E. B., Kretchmer, J. W., Beaupre, R. A., Garrett, J. L., Tucker, J. B., Edward, E. B., Foppes, J., Allen, A. F., and Cook, J., “Microwave power SiC MESFETs and GaN HEMTs”, proc. IEEE/Lester Eastman Conf. High Perform. Dev., 2002; Solid-State Electron. (In press).Google Scholar
9. Sadler, R. A., Allen, S. T., Alcorn, T. S., Pribble, W. L., Surnakeris, J. J., and Palmour, J.W., “SiC MESFET with output power of 50 watts CW at S-band”, Proc. 56th Annu. Device Research Conf., 9293 (1998).Google Scholar
10. Schwierz, F., Roschke, M., Liou, J. J., and Paasch, G., “Theoretical Investigation of the Electrical Behavior of SiC MESFETs for Microwave Power Amplification”, Mater. Sci. Forum, 264–268, 973 (1998)Google Scholar
11. Powell, A. R. and Rowland, L. B., “SiC materials-progress, status, and potential roadblocks”, Proc. IEEE, 90, 942 (2002).Google Scholar
12. Noblanc, O., Arnodo, C., Dua, C., Chartier, E., and Brylinski, C., “Progress in the use of 4H-SiC semi-insulating substrates for microwave power MESFETs”, Mater. Sci. Eng., B61–B62, 339(1999).Google Scholar
13. Augustine, G., Hogbood, H. McD., Balakrishna, V., Dunne, G., and Hopkins, R. H., “Physical Vapor Transport Growth and Properties of SiC Monocrystals of 4H Polytype”, Phys. Stat. Solidi, B202, 137(1997)Google Scholar
14. Noblanc, O., Arnodo, C., Dua, C., Chartier, E., and Brylinski, C., “Power Density Comparison between Microwave Power MESFET's Processed on Conductive and Semi-Insulating Wafer”, Mater. Sci. Forum, 338–342, 1247(2000).Google Scholar
15. Noblanc, O., Arnodo, C., Chartier, E., and Brylinski, C., “Charaterization of Power MESFETs on 4H-SiC Conductive and Semi-Insulating Wafers”, Mater. Sci. Forum, 264–268, 949 (1998).Google Scholar
16. Binari, S. C., Klein, P. B., and Kazior, T. E., “Trapping Effects in GaN and SiC Microwave FETs”, Proc. IEEE, 90, 1048(2002).Google Scholar
17. Hilton, K. P., Uren, M. J., Hayes, D. G., Wilding, P. J., Johnson, H. K., Guest, J. J., and Smith, B. H., “Surface Induced Instabilities in 4H-SiC Microwave MESFETs”, Mater. Sci. Forum, 338–342, 1251(2000).Google Scholar
18. Bergman, J. P., Jakobsson, H., Storasta, L., Carlsson, F. H. C., Magnusson, B., Sridhara, S., Pozina, G., Lendenmann, H., and Janzen, E., “Characterization and defects in Silicon Carbide”, Mater. Sci. Forum, 389–393, 9(2002).Google Scholar
19. Ohno, T., Yamaguchi, H., Kojima, K., Nishio, J., Masahara, K., Ishida, Y., Takahashi, T., Suzuki, T., and Yoshida, S., “Replication of defects from 4H-SiC wafer to epitaxial layer”, Mater. Sci. Forum, 389–393, 447(2002)Google Scholar
20. Muller, St. G., Brady, M. F., Brixius, W. H., Fechko, G., Glass, R. C., Henshall, D., Hobgood, H. McD., Jenny, J. R., Leonard, R., Malta, D., Powell, A., Tsvetkov, V. F., Allen, S., Palmour, J. and Carter, C. H. Jr, “High quality SiC substrates for semiconductor devices: from research to industrial production”, Mater. Sci. Forum, 389–393, 23(2002).Google Scholar
21. Sghaier, N., Bluet, J. M., Souifi, A., Guillot, G., Morvan, E., and Brylinski, C., “Inflence of semi-insulating purity on the output characteristics of 4H-SiC MESFETs”, Mater. Sci. Forum, 389–393, 1363(2002).Google Scholar
22. Substrates purchased from Cree, Inc., Durham, NC USA.Google Scholar
23. Wang, L., Sams, D. B., Wang, A., and Park, B.-S., “New and Improved Quantitative Characterization of SiC Using SIMS”, Mater. Sci. Forum, 389–393, 581(2002).Google Scholar
24. Kirchner, P. D., Schaff, W. J., Maracas, G. N., Eastman, L. F., Chappell, T. I., and Ransom, C. M., “The analysis of exponential and nonexponential transients in deep-level transient spectroscopy”, J. Appl. Phys., 52, 6462(1981).Google Scholar
25. Gong, M., Fung, S., Beling, C. D., and You, Z., “A deep level transient spectroscopy study of electron irradiation induced deep levels in p-type 6H–SiC”, J. Appl. Phys., 85, 7120 (1999)Google Scholar
26. Jenny, J. R., Skowronski, M., Mitchel, W. C., Hobgood, H. M., Glass, R. C., Augustine, G., and Hopkins, R. H., “Deep level transient spectroscopic and Hall effect investigation of the position of the vanadium acceptor level in 4H and 6H SiC”, Appl. Phys. Lett., 68, 1963(1996)Google Scholar