Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T05:12:59.353Z Has data issue: false hasContentIssue false

Electrical Conductivity of Piezoelectric Strontium Bismuth Titanate Under Controlled Oxygen Partial Pressure

Published online by Cambridge University Press:  15 February 2011

C. Voisard
Affiliation:
Ceramics Laboratory, Materials Science Department, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland, [email protected]
P. Duran Martin
Affiliation:
Ceramics Laboratory, Materials Science Department, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland, [email protected]
D. Damjanovic
Affiliation:
Ceramics Laboratory, Materials Science Department, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland, [email protected]
N. Settier
Affiliation:
Ceramics Laboratory, Materials Science Department, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland, [email protected]
Get access

Abstract

Hysteresis free and linear piezoelectric behavior of SrBi4Ti4O15 (SrBIT) is very promising for precise sensors/actuators devices. Despite a quite low longitudinal piezoelectric coefficient (around 15 pC/N), its elevated ferroelectric phase transition temperature (540°C) allows its use above 300°C. Electrical conductivity at such temperatures should be kept as low as possible in order to avoid loss of piezoelectric properties or charge drifts. Under reducing conditions, however, the electrical conductivity may change considerably. The electrical conductivity of SrBi4Ti4O15 (SrBIT) has been measured under controlled oxygen partial pressure at elevated temperatures (700-900°C) from 1 atm down to 10−15atm. From 1 atm down to 10−15 atm pO2, above 700°C, the conductivity of SrBIT exhibits a -1/4 slope in log-log scale indicating n-type conductivity and an impurity controlled oxygen vacancy concentration. A conductivity minimum is observed around 0.2 atm for undoped SrBIT at 800°C. Acceptor doping (Mn) raises the minimum and flattens the conductivity curve with slope around -1/10 at 700°C, and -1/6 at 900°C. Ionic conductivity and defect ionization are discussed to account for this. Preliminary results indicate the possibility of a large, pO2 independent, region, down to 10−15atm pO2. The ionic transport number was found to be 0.42 at 800°C for undoped SrBIT and 0.75 for Mn doped SrBIT. The activation energies of undoped (1.35 eV) and Mn doped (1.44 eV) samples are close to each other as expected for a common mechanism

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

[1] Gandhi, M. V. and Thompson, B. S., Smart Materials and Structures, Chapman & Hall, London, 1992.Google Scholar
[2] Moseley, P. T. and Crocker, A. J., Sensor Materials, Institute of Physics Publishing, Bristol, 1996.Google Scholar
[3] Moulson, A. J. and Herbert, J. M., Electroceramics, Chapman and Hall, Cambridge, 1990.Google Scholar
[4] Willing, B., Kohli, M., Brooks, K., Muralt, P. and Setter, N., Ferroelectrics 201 pp. 14156 (1997).10.1080/00150199708228363Google Scholar
[5] Willing, B., Kohli, M., Muralt, P. and Oehler, O., Infrared Phys. Techn. 39 pp. 443449 (1998).10.1016/S1350-4495(98)00036-XGoogle Scholar
[6] Newnham, R. E., Wolfe, R. W. and Dorrian, J. F., Mater. Res. Soc. Bull. 6 pp. 10291040 (1971).10.1016/0025-5408(71)90082-1Google Scholar
[7] Damjanovic, D., Demartin, M., Shulman, H. S., Testorf, M. and Setter, N., Sensors and Actuators A 53 pp. 353360 (1996).10.1016/0924-4247(96)80160-9Google Scholar
[8] Desu, S. B. and Subbarao, E. C., Advances in Ceramics, The American Ceramic Society, Chicago, 1981, pp. 189206.Google Scholar
[9] Kato, T., Jap. J. Appl. Phys 22 pp. 4749 (1983).10.7567/JJAPS.22S2.47Google Scholar
[10] Osawa, S.-I., Furuzawa, A. and Fujikawa, N., J. Am. Ceram. Soc. 76 (5), pp. 11911194 (1993).10.1111/j.1151-2916.1993.tb03739.xGoogle Scholar
[11] Data, I. C. f. D., Ed. (1998). Powder Diffraction File. Newtown Square, USA.Google Scholar
[12] Chan, N.-H., Sharma, R. K. and Smyth, D. M., J. Am. Ceram. Soc. 64 (9), pp. 556562 (1981).10.1111/j.1151-2916.1981.tb10325.xGoogle Scholar
[13] Chan, N.-H., Sharma, R. K. and Smyth, D. M., J. Am. Ceram. Soc. 65 (3), pp. 167170 (1982).10.1111/j.1151-2916.1982.tb10388.xGoogle Scholar
[14] Smyth, D. M., Prog. Sol. State Chem. 15 pp. 145171 (1984).10.1016/0079-6786(84)90001-3Google Scholar
[15] Kim, J.-Y., Song, C.-R. and Yoo, H.-I., J. Electroceram. 1 (1), pp. 2739 (1997).Google Scholar
[16] Palanduz, C. A. and Smyth, D. M., J. Europ. Ceram. Soc. 19 (6-7), pp. 731735 (1998).10.1016/S0955-2219(98)00314-8Google Scholar
[17] Chan, N. H. and Smyth, D. M., J. Am. Ceram. Soc. 67 (4), pp. 285288 (1984).10.1111/j.1151-2916.1984.tb18849.xGoogle Scholar
[18] Jovalekic, C., Pavlovic, M., Osmokrovic, P. and Atanasoska, L., Appl. Phys. Lett. 72 (9), pp. 10511053 (1998).10.1063/1.120961Google Scholar
[19] Chang, E. K., Mehta, A. and Smyth, D. M. in High Temperature Materials and Dielectrics and Insulation Divisions, Tuller, H. L. and Smyth, D. M. (Symposium on Electro-Ceramics and Solid-State ionics, 88–3, Honolulu, Hawaii 1987), pp. 3545.Google Scholar