Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T04:18:40.958Z Has data issue: false hasContentIssue false

Electrical Characterization of InAs/(GaIn)Sb Infrared Superlattice Photodiodes for the 8 to 12νm Range

Published online by Cambridge University Press:  10 February 2011

L. Bürkle
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Tullastraβe 72, D-79108 Freiburg, Germany
F. Fuchs
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Tullastraβe 72, D-79108 Freiburg, Germany Email: [email protected]
R. Kiefer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Tullastraβe 72, D-79108 Freiburg, Germany
W. Pletschen
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Tullastraβe 72, D-79108 Freiburg, Germany
R. E. Sah
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Tullastraβe 72, D-79108 Freiburg, Germany
J. Schmitz
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Tullastraβe 72, D-79108 Freiburg, Germany
Get access

Abstract

Abstract

InAs/(GaIn)Sb superlattice photodiodes with a cutoff wavelength of 8.711μm show adynamic impedance of R0A= 1.5 kωcm2at 77 K and a responsivity of 2 A/W, corresponding to a detectivity of D*= 1 x 1012 cmv√Hz/W. Diffusion limited performance is observed above 100 K. At lower temperatures the diodesare limited by generation-recombination currents. An analysis of the influence of different diode sidewall passivations on the surface contribution to the diode leakage current is presented. The out-of-plane electron mobility as well as the relative contributions of the electron and hole diffusion currents to the diode current were determined by a measurement of the magnetic field dependence of the reverse saturation current density of the diodes

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Smith, D. L., and Mailhiot, C., J. Appl. Phys. 62, 2545 (1987).Google Scholar
[2] Johnson, J. L., Samoska, L.A., Gossard, A. C., Merz, J. L., Jack, M. D., Chapman, G. R., Baumgratz, B. A., Kosai, K., and Johnson, S. M., J. Appl. Phys. 80, 1116(1996).Google Scholar
[3] Fuchs, F., Weimar, U., Pletschen, W., Schmitz, J., Ahlswede, E., Walther, M., Wagner, J., and Koidl, P., Appl. Phys. Lett. 71, 3251 (1997).Google Scholar
[4] Fuchs, F., Weimar, U., Ahlswede, E., Pletschen, W., Schmitz, J., and Walther, M., Proc. SPIE 3287, 14 (1998).Google Scholar
[5] Grein, C. H., Flatte, M. E., Ehrenreich, H., and Miles, R. H., J. Appl. Phys. 77, 4156 (1995).Google Scholar
[6] Youngdale, E. R., Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Grein, C. H., Youngdale, P. M., Ehrenreich, H., Appl. Phys. Lett. 64, 3160 (1994).Google Scholar
[7] Fuchs, F., Bürkle, L., Pletschen, W., Schmitz, J., Walther, M., GÜllich, H., Herres, N., and Müller, S., Proc. SPIE 3794, 41 (1999).Google Scholar
[8] Fuchs, F., Ahlswede, E., Weimar, U., Pletschen, W., Schmitz, J., Hartung, M., Jager, B., and Szmulowicz, F., Appl. Phys. Lett. 73, 3760 (1998).Google Scholar
[9] Weimar, U., Fuchs, F., Ahlswede, E., Schmitz, J., Pletschen, W., Herres, N., and Walther, M.,Mat. Res. Soc. Symp.Proc. 484, 123 (1998).Google Scholar
[10] Schacham, S. E., and Finkman, E., J. Vac. Sci. Technol. A 7, 387 (1989).Google Scholar
[11] Reine, M. B., Sood, A. K., and Tredwell, T. J., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. 18, 201 (Academic Press, New York, 1981).Google Scholar