Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:39:05.374Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Defects by Complementary Spectroscopies

Published online by Cambridge University Press:  10 February 2011

A. Castaldini
Affiliation:
INFM, Department of Physics, University of Bologna, Bologna, Italy
A. Cavallini
Affiliation:
INFM, Department of Physics, University of Bologna, Bologna, Italy
P. Fernandez
Affiliation:
Departamento de Fisica de Materiales, Universidad Complutense, Madrid, Spain
B. Fraboni
Affiliation:
INFM, Department of Physics, University of Bologna, Bologna, Italy
J. Piqueras
Affiliation:
Departamento de Fisica de Materiales, Universidad Complutense, Madrid, Spain
L. Polenta
Affiliation:
INFM, Department of Physics, University of Bologna, Bologna, Italy
Get access

Abstract

Deep levels in II-VI compounds were investigated by complementary junction and optical spectroscopy methods to assess the characteristics of the traps as well as the limits and the reliability of the techniques applied. The electrical properties have been investigated by current and capacitance transient spectroscopy, while the optical properties have been studied by cathodoluminescence. A critical and comparative analysis of the results obtained with the various methods allowed the determination of the parameters and the nature (majority or minority carrier trap) of most of the detected levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Blood, P. and Orton, J.W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, (Academic Press, U.K., 1992).Google Scholar
[2] Look, D.C. Electrical Characterization of GaAs Materials and Devices (Wiley Publ., New York, 1989).Google Scholar
[3] Hurtes, C., Boulou, M., Mitonneau, M. and Bois, D., Appl.Phys.Lett. 32, 821 (1978).Google Scholar
[4] Mooney, P.M. J.Appl.Phys. 54, 208 (1983).Google Scholar
[5] Moravec, P., Hage-Ali, M., Chibani, L. and Siffert, P. Mat Sci.Eng. B16, 223 (1993).Google Scholar
[6] Fang, Z., Shan, L.,Schlesinger, T.E. and Milnes, A.G. Solid State Electron. 32, 405 (1989).Google Scholar
[7] Balland, J.C., Zieleinger, J.P., Noguet, C. and Tapiero, M., J.Phys.D 19 57 (1986).Google Scholar
[8] Yoshie, O., Kamihara, M., Jpn.J.Appl.Phys. 22 621 (1983).Google Scholar
[9] Tapiero, M., Benjelloun, N., Zielinger, J.P., Hamd, S.El, and Noguet, C. J.Appl.Phys. 64 4006 (1988).Google Scholar
[10] Yoshie, O., Kamihara, M., Jpn.J.Appl.Phys. 22 629 (1983).Google Scholar
[11] Pal, U., Fernadez, P. and Piqueras, J., Mater.Lett. 23 227 (1995).Google Scholar
[12] Hofmann, D.M., Omling, D., Grimmeiss, H.G., Meyer, B.K., Benz, K.W. and Sinerius, D. Phys.Rev.B 45, 6247 (1992).Google Scholar
[13] Barnett, Davis C., Alired, D.D., Reyes-Mena, A., Gonzalez-Hernandez, J., Gonzales, O., Hess, B.C. and Allred, W.P. Phys.Rev.B 47, 13363 (1993).Google Scholar
[14] Takebe, T., Saraie, J. and Matsunami, H. JAppl.Phys. 53, 457 (1982).Google Scholar
[15] Castaldini, A., Cavallini, A., Fraboni, B.,Piqueras, J., Polenta, L., presented at the 1995 DRIP Conference, Boulder, Colorado U.S.A. 1995 (unpublished).Google Scholar