Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T11:27:06.923Z Has data issue: false hasContentIssue false

Efficient Energy Transfer Between CdS Quantum Dots in Layer-by-layer Self-assembled Films

Published online by Cambridge University Press:  31 January 2011

Kunio Shimura
Affiliation:
[email protected], Osaka City University, Applied Physics, Osaka, Japan
DaeGwi Kim
Affiliation:
[email protected], Osaka City University, Applied Physics, Osaka, Japan
Masaaki Nakayama
Affiliation:
[email protected], Osaka City University, Applied Physics, Osaka, Japan
Get access

Abstract

We have investigated efficient energy transfer (ET) between CdS quantum dots (QDs) measuring photoluminescence dynamics in layer-by-layer (LBL) self-assembled films. The assembly of negatively charged colloidal QDs and positively charged polyelectrolytes results in QD/polymer multilayers. Furthermore, to reveal how the ET rate depends on the distance between CdS QDs, we fabricated bilayer structures consisting of differently sized CdS QDs. It is experimentally verified that ET between the donor and acceptor QDs is conclusively dominated by the dipole-dipole interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kagan, C. R., Murray, C. B., and Bawendi, M. G., Phys. Rev. B54, 8633 (1996).Google Scholar
2 Crooker, S. A., Hollingsworth, J. A., Tretiak, S., and Klimov, V. I., Phys. Rev. Lett. 89, 186802 (2002).Google Scholar
3 Franzl, T., Klar, T. A., Schietinger, S., Rogach, A. L., and Feldmann, J., Nano Lett. 4, 1599 (2004).Google Scholar
4 Wuister, S. F., Koole, R., Donegá, C. M., and Meijerink, A., J. Phys. Chem. B109, 5504 (2005).Google Scholar
5 Spanhel, L., Haase, M., Weller, H., and Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987).Google Scholar
6 Kim, D., Mishima, T., Tomihira, K., and Nakayama, M., J. Phys. Chem. C112, 10668 (2008).Google Scholar
7 Matsumoto, H., Sakata, T., Mori, H., and Yoneyama, H., J. Phys. Chem. 100, 13781 (1996).Google Scholar
8 Kim, D., Teratani, N., Mizoguchi, K., Nishimura, H., and Nakayama, M., Int. J. Mod. Phys. B15, 3829 (2001).Google Scholar
9 Kim, D., Teratani, N., and Nakayama, M., Jpn. J. Appl. Phys. 41, 5064 (2002).Google Scholar
10 Tomihira, K., Kim, D., and Nakayama, M., J. Lumin. 122&123, 471 (2007).Google Scholar
11 Kim, D., Okahara, S., Nakayama, M., and Shim, Y., Phys. Rev. B78, 153301 (2008).Google Scholar