Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T11:44:42.538Z Has data issue: false hasContentIssue false

Efficiency of inhibitors for chloride-induced crevice corrosion of Alloy 22

Published online by Cambridge University Press:  28 March 2012

Mauricio Rincón Ortíz
Affiliation:
Departamento Materiales, Comisión Nacional de Energía Atómica, Argentina. Instituto Sabato, UNSAM / CNEA, Argentina. CONICET, Argentina.
Martín A. Rodríguez
Affiliation:
Departamento Materiales, Comisión Nacional de Energía Atómica, Argentina. Instituto Sabato, UNSAM / CNEA, Argentina. CONICET, Argentina.
Ricardo M. Carranza
Affiliation:
Departamento Materiales, Comisión Nacional de Energía Atómica, Argentina. Instituto Sabato, UNSAM / CNEA, Argentina.
Raul B. Rebak
Affiliation:
GE Global Research, USA
Get access

Abstract

Alloy 22 is considered as a candidate for engineered barriers of nuclear repositories. Chloride is the only species present in groundwater that is able to promote crevice corrosion, if severe conditions such as high temperatures and a tight crevice are present. Other species present in groundwater have been shown to be inhibitors or non-detrimental species. The objective of this work was to evaluate the efficiency of different species potentially found in groundwaters as possible inhibitors of crevice corrosion of Alloy 22. The crevice corrosion repassivation potential of Alloy 22 was determined in chloride plus inhibitor solutions at 90ºC. The species tested as inhibitors were nitrate, sulfate, carbonate, bicarbonate, chromate, molybdate and tungstate. Nitrate was the most efficient among tested inhibitors. The carbonate was the only species of the carbonate / bicarbonate / carbonic acid equilibrium able to inhibit the chloride-induced crevice corrosion of Alloy 22. Sulfate, chromate and molybdate were moderately good inhibitors.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rebak, R. B., “Corrosion of Non-Ferrous Alloys. I. Nickel-, Cobalt-, Copper-, Zirconium- and Titanium-Based Alloys”, Corrosion and Environmental Degradation , Vol. II, ed. Schutze, M. (Wiley-VCH, 2000) pp. 69111.Google Scholar
2. Gordon, G. M., Corrosion, 58, 811 (2002).10.5006/1.3287662Google Scholar
3. Rebak, R. B., Paper 05610, Corrosion/2005, (NACE Intl. Houston, TX, 2005).Google Scholar
4. Carranza, R. M., Journal of Metals, 58 (January 2008).Google Scholar
5. Dunn, D. S., Pan, Y. -M., Chiang, K., Yang, L., Cragnolino, G. A., and He, X., Journal of Metals, 49 (January 2005).Google Scholar
6. Dunn, D. S. and Brossia, C. S., Paper 02548, Corrosion/2002 , (NACE Intl., Houston, TX, 2002).Google Scholar
7. Ilevbare, G. O., King, K. J., Gordon, S. R., Elayat, H. A., Gdowski, G. E., and Gdowski, T. S. E., Journal of The Electrochemical Society, 152, B547 (2005).10.1149/1.2104067Google Scholar
8. Carranza, R. M., Rodríguez, M. A., and Rebak, R. B., Corrosion, 63, 480 (2007).10.5006/1.3278400Google Scholar
9. ASTM G192-08, “Standard Test Method for Determining the Crevice Repassivation Potential of Corrosion-Resistant Alloys Using a Potentiodynamic-Galvanostatic-Potentiostatic Technique” Annual Book of ASTM Standards , vol. 03.02 (West Conshohocken, PA: ASTM Intl., 2008).Google Scholar
10. Dunn, D. S., Yang, L., Wu, C., and Cragnolino, G. A. in Scientific Basis for Nuclear Waste Management XXVIII, edited by Hanchar, J. M., Stroes-Gascoyne, S., and Browning, L., ( Mater. Res. Soc. Proc . 824, Warrendale, PA, 2004) pp. 3338.Google Scholar
11. Miyagusuku, M., Carranza, R. M., and Rebak, R. B., Paper 10238, Corrosion/2010 , (NACE Intl. Houston, TX, 2010).Google Scholar
12. Mishra, A. K., and Frankel, G. S., Corrosion, 64, 836 (2008).10.5006/1.3279917Google Scholar
13. ASTM G48-03, “Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution” Annual Book of ASTM Standards , vol. 03.02 (West Conshohocken, PA: ASTM Intl., 2003), pp. 191201.Google Scholar
14. Galvele, J. R., Journal of The Electrochemical Society, 123, 464 (1976).10.1149/1.2132857Google Scholar
15. Rebak, R. B. in Scientific Basis for Nuclear Waste Management XXX, edited by Dunn, D., Poinssot, C., and Begg, B., ( Mater. Res. Soc. Proc . 985, Warrendale, PA, 2006) pp. 261268.Google Scholar
16. Rincón Ortíz, M., Rodríguez, M. A., Carranza, R. M., and Rebak, R. B., Corrosion, 66, 105002 (2010).10.5006/1.3500830Google Scholar