Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:05:02.184Z Has data issue: false hasContentIssue false

Effects of Varying Mean Stress and Stress Amplitude on the Fatigue of Polysilicon

Published online by Cambridge University Press:  01 February 2011

H. Kahn
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University Cleveland, OH 44106, USA
R. Ballarini
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University Cleveland, OH 44106, USA
A. H. Heuer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University Cleveland, OH 44106, USA
Get access

Abstract

Polycrystalline silicon (polysilicon) single edge-notched fatigue specimens with micrometer-sized dimensions were macromachined and subjected to cyclic loading using an integrated electrostatic actuator. The effects of fatigue were determined by comparing the monotonic bend strength measured after cyclic loading to the monotonic bend strength of specimens that received no cycling. Both strengthening and weakening were observed, depending on the levels of mean stress and fatigue stress amplitude during the cyclic loading. Monotonic loading with similar stress levels prior to bend strength measurements had no effect on measured bend strength. Possible physical mechanisms responsible for this fatigue behavior are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kahn, H., Ballarini, R., Bellante, J.J., and Heuer, A.H., Science, 298, 1215 (2002).Google Scholar
2. Kahn, H., Ballarini, R., Mullen, R.L., and Heuer, A.H., Proc. R. Soc. Lond. A, 455, 3807 (1999).Google Scholar
3. Muhlstein, C.L., Stach, E.A., and Ritchie, R.O., Acta Mater., 50, 3579 (2002).Google Scholar
4. Bagdahn, J. and Sharpe, W.N. Jr, Sensors and Actuators A, 103, 9 (2003).Google Scholar
5. Kapels, H., Aigner, R., and Binder, J., IEEE Trans. Elec. Dev., 47, 1522 (2000).Google Scholar
6. Yang, J., Kahn, H., He, A.Q., Phillips, S.M., and Heuer, A.H., J. Microelectromech. Syst., 9, 485 (2000).Google Scholar
7. Ballarini, R., Kahn, H., Tayebi, N., and Heuer, A.H., Mechanical Properties of Structural Films, ASTM STP 1413, 37 (2001).Google Scholar
8. Jensen, B.D., de Boer, M.P., Masters, N.D., Bitsie, F., and LaVan, D.A., J. Microelectromech. Syst., 10, 336 (2001).Google Scholar
9. Suresh, S., Intl. J. Fracture 42, 456 (1990).Google Scholar
10. Lawn, B.R., Padture, N.P., Guiberteau, F., and Cai, H., Acta Metall. Mater., 42, 1683 (1994).Google Scholar
11. Roebben, G., Steen, M., Bressers, J., and Van der Biest, O., Prog. Mater Sci., 40, 265 (1996).Google Scholar
12. Hutchinson, J.W., Acta Metall., 35, 1605 (1987).Google Scholar
13. Kessler, H., Ballarini, R., Mullen, R.L., Kuhn, L.T., and Heuer, A.H., Comp. Mater. Sci., 5, 157 (1996).Google Scholar
14. Ritchie, R.O., Int. J. Fracture, 100, 55 (1999).Google Scholar
15. Lloyd, S.J., Molina-Aldareguia, J.M., and Clegg, W.J., J. Mater. Res., 16, 3347 (2001).Google Scholar
16. Hill, M.J. and Rowcliffe, D.J., J. Mater. Sci., 9, 1569 (1974).Google Scholar
17. Ge, D., Domnich, V., and Gogotsi, Y., J. Appl. Phys., 93, 2418 (2003).Google Scholar
18. Kato, N.I., Nishikawa, A., and Saka, H., Mater. Sci. Semiconductor Processing, 4, 113 (2001).Google Scholar
19. Demkowicz, M.J. and Argon, A.S., submitted to Phys. Rev. Lett., 2003.Google Scholar