Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T21:54:04.754Z Has data issue: false hasContentIssue false

The Effects of Transition Metal Substitutions for Copper in the Bi-Sr-Ca-Cu-O Superconducting System

Published online by Cambridge University Press:  28 February 2011

J.C. Bennett
Affiliation:
Dept. of Physics, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
F.W. Boswell
Affiliation:
Dept. of Physics, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
J.M. Corbett
Affiliation:
Dept. of Physics, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
S. Kohara
Affiliation:
Dept. of Physics, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
F.S. Razavi
Affiliation:
Dept. of Physics, Brock University, Ste.Catharines, Ont., Canada
Get access

Abstract

The effects of transition metal dopants on superconductivity in samples of nominal composition Bi2CaSr2(Cu1-xMx)208+δ with M = Co, Fe, Ni and Zn have been investigated for 0 ≤ x ≤ 1. Co and Fe additions progressively suppress the ? of the doped material and result in semiconducting behaviour for x ≤ 0.2. In the ranges 0 ≤ x ≤ .07 and near x = 1.0, x-ray diffraction reveals the samples are essentially single phase but are multiphase otherwise. Ni and Zn dopants have only a very slight effect on Tc; however, EDX analysis reveals these elements are not significantly Incorporated into the superconducting phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Santoro, A., Beech, F., Marezio, M. and Cava, R.J., Physica C 156, 693 (1988).Google Scholar
2 Bellle, J., Dupendent, H., Laborde, O., Lefur, V., Perroux, M. and Tournier, R., Physica C 156, 188 (1958).Google Scholar
3 Tarascon, J.M., Greene, L.H., Barboux, P., McKinnon, V.R., Hull, G.W., Orlando, T.P., Delin, K.A., Foner, S. and McNiff, E.J., Phys. Rev. B 36, 8393 (1987).Google Scholar
4 Xiao, G., Streltz, F.H., Gavrin, A., Du, Y.W. and Chien, C.L., Phys. Rev. B 35, 8782 (1987).Google Scholar
5 Tarascon, J.M., Miceli, P.F., Barboux, P., Huang, D.M., Hull, G.W., Giroud, M., Greene, L.H., LePage, Y., McKinnon, V.R., Tselepsis, E., Pleizier, G., Eibschutz, M., Neumann, D.A. and Rhyne, J.J., Phys. Rev. B (in press).Google Scholar
6 Tarascon, J.M., Raraesh, R., Berboux, P., Hedge, M.S., Hull, G.W., Greene, L.H., Giroud, M., LePage, Y., McKinnon, W.R., Waszcak, J.V. and Schneemeyer, L.F., Sol. State Comm. (in press).Google Scholar
7 Zandbergen, H.M., Huang, Y.K., Menken, M.J.V., Li, J.N., Kadowaki, K., Menowsky, A.A., VanTendeloo, G. and Amelinckx, S., Nature 332, 620 (1988).Google Scholar
8 Buckley, R.G., Talion, J.L., Brown, I.W.M., Presland, M.R., Flower, N.E., Gllberd, P.W., Bowden, M. and Milestone, N.B., Physica C 156, 629 (1988).Google Scholar