Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T18:05:36.545Z Has data issue: false hasContentIssue false

The Effects Of Substrate Thermal Mismatch on the Domain Structure of MOCVD-Derived Potassium Niobate Thin Films

Published online by Cambridge University Press:  15 February 2011

M. J. Nystrom
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
B. W. Wessels
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
Get access

Abstract

Domain stabilization in epitaxial potassium niobate films deposited by metalorganic chemical vapor deposition was studied. Stabilization was examined for films deposited on substrates with different coefficients of thermal expansion. X-ray diffraction of KNb03 films deposited on (100) MgAl204, (r) A1203, and (100)pseudocubic YAIO3 substrates shows a mixed domain structure consisting of (110) and (001) domains. However, KNb03 thin films deposited under identical conditions on (100) MgO, (100) SrTi03, and (100)pseudocubic LaA103 substrates exhibited only a single domain variant. A direct correlation between (001) domain volume fraction in the as-deposited KNb03 films and calculated strain resulting from thermal mismatch is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pompe, W., Gong, X., Suo, Z., and Speck, J. S., J. Appl. Phys. 74, 6012 (1993).Google Scholar
2. Speck, J. S. and Pompe, W., J. Appl. Phys. 76, 466 (1994).Google Scholar
3. Graettinger, T. M., Rou, S. H., Ameen, M. S., Auceillo, O., and Kingon, A. I., Appl. Phys. Lett. 58, 1964 (1991).Google Scholar
4. Nystrom, M. J., Wessels, B. W., Chen, J., and Marks, T. J., Appl. Phys. Lett. 68, 761 (1996).Google Scholar
5. Gopalan, V. and Raj, R., Appl. Phys. Lett. 68, 1323 (1996).Google Scholar
6. Gopalan, V. and Raj, R., J. Am. Ceram. Soc. 78, 1825 (1995).Google Scholar
7. Chow, A. F., Lichtenwalner, D. J., Auciello, O., Kingon, A. I., Busch, J. R., and Wood, V. E., J. Appl. Phys. 78, 435 (1995).Google Scholar
8. Nystrom, M. J., Ph.D. Thesis, Northwestern University, (1996).Google Scholar
9. Nystrom, M. J. and Wessels, B. W., Mater. Res. Soc. Proc, 453 (1996).Google Scholar
10. Nystrom, M. J., Wessels, B. W., Studebaker, D. B., Marks, T. J., Lin, W. P., and Wong, G. K., Appl. Phys. Lett. 67, 365 (1995).Google Scholar
11. Nelson, J. B. and Riley, D. P., Proc. Phys. Soc. 57, 161 (1944).Google Scholar
12. Speck, J. S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys. 76, 477 (1994).Google Scholar
13. Shirane, G., Newnham, R., and Pepinsky, R., Physical Review 96, 581 (1954).Google Scholar
14. Wood, E. A., Acta Cryst. 4, 353 (1951).Google Scholar