Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T22:48:24.887Z Has data issue: false hasContentIssue false

Effects of strain on the resonant Raman profile of metallic

Published online by Cambridge University Press:  26 February 2011

Antonio G Souza Filho
Affiliation:
[email protected], Universidade Federal do Ceara, Fisica, Campus do Pici, Caixa Postal 6030, Fortaleza, Ceara, 60455-900, Brazil, +55 85 4008 9912, +55 85 4008 9450
N Kobayashi
Affiliation:
[email protected], Tohoku University, Physics, Japan
Jie Jiang
Affiliation:
[email protected], Tohoku University, Physics, Japan
Riichiro Saito
Affiliation:
[email protected], Tohoku University, Physics, Japan
Stephen B Cronin
Affiliation:
[email protected], University Southern California, Physics, United States
Josue Mendes Filho
Affiliation:
[email protected], Universidade Federal do Ceara, Fisica, Brazil
Ge G Samsonidze
Affiliation:
[email protected], MIT, Electrical Engineering and Computer Science, United States
Gene Dresselhaus
Affiliation:
[email protected], MIT, Francis Bitter Magnet Laboratory, United States
Mildred S Dresselhaus
Affiliation:
[email protected], MIT, Electrical Engineering and Computer Science and Physcs Department, United States
Get access

Abstract

In this paper we report the effects of strain on the electronic properties of single wall carbon nanotubes and its consequence on the resonant Raman cross section. A quantum interference effect has been predicted for the radial breathing mode spectra for metallic tubes. For metallic tubes, the lower and upper components of Eii resulting from the trigonal warping effect are affected differently and for low chiral angle they cross for some strain value. Near (at) the crossing point, the resonant Raman spectra profile exhibits a maximum (minimum) value due to a quantum interference in the Raman cross section. This Raman cross section interference effect was observed in Raman experiments carried out on isolated SWNTs. The Raman experiment performed on an isolated strained metallic SWNT supports our modeling predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.Google Scholar
[2] Strano, M. S., Miller, M. K., Allen, M. J., Moore, V. C., Oconnell, M. J., Kittrell, C., Hauge, R. H., and Smalley, R. E., J. Nanosci. Nanotechnol. 3, 81 (2003).Google Scholar
[3] Yang, L. and Han, J., Phys. Rev. Lett. 85, 154 (2000).Google Scholar
[4] Yang, L., Anantram, M. P., Han, J., and Lu, J. P., Phys. Rev. B 60, 13874 (1999).Google Scholar
[5] Capaz, R. B., Sparatu, C. D., Tangney, P., Cohen, M. L., and Louie, S. G., phys. stat. sol.(b) 241, 3352 (2004).Google Scholar
[6] Filho, A. G. Souza, Kobayasi, N., Jiang, J., Grüuneis, A., Saito, R., Filho, J. Mendes, Samsonidze, G. G., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. Letters 95, 217403 (2005).Google Scholar
[7] Cronin, S. B., Swan, A. K., Unlu, M. S., Goldberg, B. B., Dresselhaus, M. S., and Tinkham, M., Phys. Rev. Lett. 93, 167401 (2004).Google Scholar
[8] Cronin, S. B., Swan, A. K., Unlu, M. S., Goldberg, B. B., Dresselhaus, M. S., and Tinkham, M., Phys. Rev. B (2005), in press.Google Scholar
[9] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 61, 2981 (2000).Google Scholar
[10] Wu, J., Walukiewicz, W., Shan, W., Bourret-Courchesne, E., Ager, J. W. III, You, K. M., Haller, E. F., Kissell, K., Bachilo, S. M., Weisman, R. B., and Smalley, R. E., Phys. Rev. Letters 93, 07404 (2004).Google Scholar
[11] Lucas, M. and Young, R. J., Phys. Rev. B 69, 085405 (2004).Google Scholar
[12] Popov, V. N., New J. Phys. 6, 17 (2004).Google Scholar
[13] Samsonidze, G. G., Saito, R., Kobayashi, N., Grüuneis, A., Jiang, J., Jorio, A., Chou, S. G., Dresselhaus, G., and Dresselhaus, M. S., Appl. Phys. Lett. 85, 5703 (2004).Google Scholar
[14] Collins, P. G., Arnold, M. S., and Avouris, P., Science 292, 706 (2001).Google Scholar
[15] Martin, R. M. and Falicov, L. M., Light Scattering in Solids, page 80, Springer-Verlag, Berlim, 1975.Google Scholar
[16] Jiang, J., Saito, R., Grüuneis, A., Chou, S. G., Samsonidze, G. G., Jorio, A., Dres-selhaus, G., and Dresselhaus, M. S., Phys. Rev. B 71, 205420 (2005).Google Scholar
[17] Bussi, G., Menendez, J., Ren, J., Canonico, M., and Molinari, E., Phys. Rev. B 71, 041404 (2005).Google Scholar
[18] Jiang, J., Saito, R., Grüuneis, A., Dresselhaus, G., and Dresselhaus, M. S., Carbon 42, 3169 (2004).Google Scholar
[19] Fantini, C., Jorio, A., Souza, M., Mai, A. J. Jr., Strano, M. S., Dresselhaus, M. S., and Pimenta, M. A., Phys. Rev. Lett. 93, 147406 (2004).Google Scholar