Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T02:48:29.593Z Has data issue: false hasContentIssue false

The Effects of Rapid Recrystallization and Ion Implanted Carbon on The Solid Phase Epitaxial Regrowth of Si1−xGex Alloy Layers On Silicon

Published online by Cambridge University Press:  15 February 2011

M.J. Antonell
Affiliation:
University of Florida, Gainesville, FL 32611
T.E. Haynes
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
K.S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611
Get access

Abstract

Transmission electron microscopy has been combined with time-resolved reflectivity and ion channeling to study the effects of regrowth temperature and carbon introduction by ion implantation on the solid phase epitaxial regrowth (SPER) of strained 2000Å, Sio.88Ge0.12/Si alloy films grown by molecular-beam epitaxy (MBE). Relative to the undoped layers, carbon incorporation in the MBE grown SiGe layers prior to regrowth at moderate temperatures (500- 700°C) has three main effects on SPER; these include a reduction in SPER rate, a delay in the onset of strain-relieving defect formation, and a sharpening of the amorphous-crystalline (a/c) interface, i.e., promotion of a two-dimensional (planar) growth front.1 Recrystallization of amorphized SiGe layers at higher temperatures (1 100°C) substantially modifies the defect structure in samples both with and without carbon. At these elevated temperatures threading dislocations extend completely to the Si/SiGe interface. Stacking faults are eliminated in the high temperature regrowth, and the threading dislocation density is slightly higher with carbon implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Antonell, M.J., Haynes, T.E., Jones, K.S. J. Appl. Phys. in press (1995).Google Scholar
2. Bean, J.C. Proc. of the IEEE 80, 571587 (1992).Google Scholar
3. Patton, G.L., Comfort, J.H. IEEE Electron Device Letters 11, 171173 (1990).Google Scholar
4. Roulston, D.J., McGregor, J.M. Solid State Electronics 35, 10191020 (1992).Google Scholar
5. Stiffler, S.R., Comfort, J.H., Stanis, C.L., Harame, D.L., Fresart, E.D. J. Appl. Phys. 70, 1461–1420 (1991).Google Scholar
6. Kamjoo, K., Nayak, D.K., Park, J.S., Woo, J.C.S., Wang, K.L. J. Appl. Phys. 69, 66746678 (1991).Google Scholar
7. Shaffler, F., Tobben, D., Herzog, H.J., Abstreiter, G., Hollander, B. Semicond. Sci. Technol. 7, 260266 (1992).Google Scholar
8. Gronet, C.M. J. Appl. Phys. 61, 24072409 (1987).Google Scholar
9. Xie, Y.H., Fitzgerald, E.A., Monroe, D., Silverman, P.J., Watson, G.P. J. Appl. Phys. 73, 83648370 (1993).Google Scholar
10. Vetter, A., Kovacic, S.J., Simmons, J.G., Noel, J.P., Houghton, D.C. Solid State Electronics 36, 12471250 (1993).Google Scholar
11. Wang, K.L., Karunasiri, R.P. J.Vac. Sci. Technol. 11, 11591167 (1993).Google Scholar
12. Kesan, V.P., May, P.G., Bassous, E., Iyer, S.S. IEEE Electron Device Letters 90, 637640 (1990).Google Scholar
13. Lin, T.L., Jones, E.W. IEEE Electron Device Letters 90, 641643 (1990).Google Scholar
14. Fukami, A., Shoji, K., Nagano, T. Appl. Phys. Lett. 57, 23452347 (1990).Google Scholar
15. Lombardo, S., Priolo, F., Campisano, S.U. Appl. Phys. Lett. 62, 23352337 (1993).Google Scholar
16. Erbel, K., Iyer, S.S., Zollner, S., Tsang, J.C., LeGoues, F.K. Appl. Phys. Lett. 60, 30333035 (1992).Google Scholar
17. Nishikawa, S., Yamaji, T. Appl. Phys. Lett. 62, 303305 (1992).Google Scholar
18. Lee, C., Haynes, T.E., Jones, K.S. Appl. Phys. Lett. 62, 501503 (1993).Google Scholar
19. Isomae, S., Ishiba, T., Ando, T., Tamura, M. J. Appl. Phys. 74, 38153819 (1993).Google Scholar