No CrossRef data available.
Article contents
The Effects of Rapid Recrystallization and Ion Implanted Carbon on The Solid Phase Epitaxial Regrowth of Si1−xGex Alloy Layers On Silicon
Published online by Cambridge University Press: 15 February 2011
Abstract
Transmission electron microscopy has been combined with time-resolved reflectivity and ion channeling to study the effects of regrowth temperature and carbon introduction by ion implantation on the solid phase epitaxial regrowth (SPER) of strained 2000Å, Sio.88Ge0.12/Si alloy films grown by molecular-beam epitaxy (MBE). Relative to the undoped layers, carbon incorporation in the MBE grown SiGe layers prior to regrowth at moderate temperatures (500- 700°C) has three main effects on SPER; these include a reduction in SPER rate, a delay in the onset of strain-relieving defect formation, and a sharpening of the amorphous-crystalline (a/c) interface, i.e., promotion of a two-dimensional (planar) growth front.1 Recrystallization of amorphized SiGe layers at higher temperatures (1 100°C) substantially modifies the defect structure in samples both with and without carbon. At these elevated temperatures threading dislocations extend completely to the Si/SiGe interface. Stacking faults are eliminated in the high temperature regrowth, and the threading dislocation density is slightly higher with carbon implantation.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1995