Article contents
Effects of Radiation Exposure on SRL 131 Composition Glass in a Steam Environment
Published online by Cambridge University Press: 25 February 2011
Abstract
Monoliths of SRL 131 borosilicate glass were irradiated in a saturated air-steam environment, at temperatures of 150°C, to examine the effects of radiation on nuclear waste glass behavior. Half of the tests used actinide and Tc-99 doped glass and were exposed to an external ionizing gamma source, while the remaining glass samples were doped only with uranium and were reacted without any external radiation exposure. The effects of radiation exposure on glass alteration and secondary phase formation were determined by comparing the reaction rates and mineral paragenesis of the two sets of samples.
All glass samples readily reacted with the water that condensed on their surfaces, producing two types of smectite clay within the first three days of testing. Additional crystalline phases precipitated on the altered glass surface with increasing reaction times, including zeolites, smectite, calcium and sodium silicates, phosphates, evaporitic salts, and uranyl silicates. Similar phases were produced on both the nonirradiated and irradiated samples; however, the quantity of precipitates was increased and the rate of paragenetic sequence development was accelerated in the latter. After 56 days of testing, the composite smectite layer developed at an average rate of ~0.16 and 0.63 µm/day for the nonirradiated and irradiated samples, respectively. These comparisons indicate that layer development is accelerated approximately four-fold due to the radiation exposure at high glass surface area/liquid volume (SA/V) conditions. This increase apparently occurs in response to the rapid concentration of radiolytic products, including nitric acid, in the thin films of water contacting the sample monoliths.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
- 5
- Cited by