Published online by Cambridge University Press: 15 February 2011
The electrical effects associated with pulsed laser irradiation of thermal oxides of silicon were investigated. Three of the functions performed by thermal oxides are control of field effects, junction passivation and electrical isolation. Representative oxide thicknesses suitable for these applications were studied: ≈ 100 nm; ≈ 500 nm and ≥, 1.0 μm respectively. The oxides were irradiated by a repetitively Q-switched Nd 3+:YAG laser operated at the fundamental frequency. The key laser parameters of energy and power density were varied over a wide range, from no change to the onset of discernible change and irreversible damage. The range of energy densities over which the oxide was not electrically degraded was established for each thickness of the oxide. This range of energy densities is compared to the useful range of energy densities for annealing polysilicon and for activating an implant through an oxide. The electrical data was obtained using a mercury probe and through the analysis of a large number of MOS capacitors formed on the irradiated oxides. Parameters measured include: breakdown voltages, surface state charge densities and flat band voltages.