Published online by Cambridge University Press: 21 February 2011
This work reports on attempts to tailor the electric field of a-Si:H solar cells by the graded low-level doping of the intrinsic layer to optimize conversion efficiency in the degraded state. Based on wavelength dependent collection measurements and numerical modeling, the degradation behavior of doped and undoped cells is explained in terms of the interaction of dopants and the light-induced space-charge. Low level doping is shown to shift the electric field away from the p/i interface towards the bulk of the i-layer. This results in a better carrier collection from the back part of the solar cell, and solar cells with improved stabilized red light conversion efficiency can be realized. These cells can be readily applied as bottom cells of stacked solar cells.