Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T21:03:06.549Z Has data issue: false hasContentIssue false

Effects of Landau Level Coupling on the Magnetic Band Structure for Electrons in a Two-Dimensional Hexagonal Lattice

Published online by Cambridge University Press:  28 February 2011

O. Kühn
Affiliation:
Institute of Physics and WIP bei der Max Planck Arbeitsgruppe “Halbleitertheorie” Humboldt University Berlin, Hausvogteiplatz, 10117 Berlin, Germany
V. Fessatidis
Affiliation:
Department of Physics, Fordham University, Bronx, New York 10458
H.L. Cui
Affiliation:
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030
N.J.M. Horing
Affiliation:
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030
Get access

Abstract

The single-particle energy spectrum of two-dimensional electrons in a lateral surface superlattice of hexagonal symmetry, subject to a normal uniform magnetic field is investigated. Special attention is focused on the coupling of different Landau levels due to the periodic potential. It is shown that the inclusion of this coupling causes strong modifications of the spectrum compared with the limit of no coupling investigated previously. It is found that the importance of Landau level coupling is mainly determined by the relation between the potential amplitude and the cyclotron energy, as well as the Landau level index.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hofstadter, D. R., Phys. Rev. B 14, 2239 (1976).Google Scholar
2 Claro, F. H. and Wannier, G. H., Phys. Rev. B 19, 6068 (1979).Google Scholar
3 Weiss, D., Roukes, M. L., Menschig, A., Grambow, P., von Klitzing, K., and Weimann, G., Phys. Rev. Lett. 66, 2790 (1991).Google Scholar
4 Lorke, A., Kotthaus, J. P., and Ploog, K., Phys. Rev. B 44, 3447 (1991).Google Scholar
5 Gerhardts, R. R., Weiss, D., and Wluf, U., Phys. Rev. B 43, 5192 (1991).Google Scholar
6 Fleischmann, R., Geisel, T., and Ketzmerick, R., Phys. Rev. Lett. 68, 1367 (1992).Google Scholar
7 Pfannkuche, D. and Gerhardts, R., Phys. Rev. B 46, 12606 (1992).Google Scholar
8 Kern, K., Heitmann, D., Grambow, P., Zhang, Y. H., and Ploog, K., Phys. Rev. Lett. 66, 1618 (1991).Google Scholar
9 Silberbauer, H., J. Phys.: Condens. Matter 4, 7355 (1992)Google Scholar
10 Kühn, O., Fessatidis, V., Cui, H. L., Selbmann, P. E., and Horing, N. J. M., Phys. Rev. B 47, 13019 (1993).Google Scholar
11 Petschel, G. and Geisel, T., Phys. Rev. Lett. 71, 239 (1993).Google Scholar
12 Kühn, O., Selbmann, P. E., Fessatidis, V., and Cui, H. L., J. Phys.: Condens. Matter 5, 8225 (1993).Google Scholar
13 MacDonald, A. H., Phys. Rev. B 29, 3057 (1983).Google Scholar
14 Fessatidis, V. and Cui, H. L., Phys. Rev. B 43, 11725 (1991).Google Scholar
15 Langbein, D., Phys. Rev. 180, 633 (1969).Google Scholar