Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:42:30.071Z Has data issue: false hasContentIssue false

Effects of Ion-Irradiation and Hydrogenation on the Doping of InGaAIN Alloys

Published online by Cambridge University Press:  22 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Carrier concentrations in doped InN, In0.37 Ga0.63 N and In0.75 Al0.25 N layers are reduced by both F+ ion implantation to produce resistive material for device isolation, and by exposure to a hydrogen plasma. In the former case, post-implant annealing at 450–500°C produces sheet resistances > 106 Ω/ℹ in initially n+ (7 x 1018 − 3 x 1019 cm−3) ternary layers and values of ∼5 x 103 Ω/ℹ in initially degenerately-doped (4 x 1020 cm−3) InN. The evolution of sheet resistance with post-implant annealing temperature is consistent with the introduction of deep acceptor states by the ion bombardment, and the subsequent removal of these states at temperatures −500°C where the initial carrier concentrations are restored. Hydrogenation of the nitrides at 200°C reduces the n-type doping levels by 1-2 orders of magnitude and suggests that unintentional carrier passivation occurring during cool down after epitaxial growth may play a role in determining the apparent doping efficiency in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, R. F., Proc. IEEE 79 702 (1991).Google Scholar
2. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B1O 1237 (1992).CrossRefGoogle Scholar
3. Pankove, J. I., Mat. Res. Soc. Symp. Proc. 162 515 (1990).Google Scholar
4. Akasaki, I., Amano, H., Kito, M. and Hiramastsu, K., J. Lumin. 48/49 666 (1991).Google Scholar
5. Nakamura, S., Senoh, M. and Mukai, T., Jap. J. Appl. Phys. 30 L 1708 (1991).Google Scholar
6. Powell, R. C., Tamasch, G. A, Kim, Y.-W., Thornton, J. A. and Greene, J. E., Mat. Res. Soc. Symp. Proc. 162 525 (1990).Google Scholar
7. Sheng, T. Y., Lu, Z. Q. and Collins, G. J., Appl. Phys. Lett. 52 576 (1988).Google Scholar
8. Wakahara, A. and Yoshida, A., Appl. Phys. Lett. 54 709 (1989).Google Scholar
9. Lei, T., Faniculli, M., Molnar, R. J., Moustakas, T. D., Graham, R. J. and Scanlon, J., Appl. Phys. Lett. 59 944 (1991).Google Scholar
10. Tansley, T. L. and Foley, C. P., J. Appl. Phys. 60 2092 (1986).Google Scholar
11. Kubata, K., Kobayashi, Y. and Fujimoto, K., J. Appl. Phys. 66 2984 (1989).Google Scholar
12. Khan, M. A., Hove, J. M. Van, Kuznia, J. N. and Olsen, D. T., Appl. Phys. Lett. 58 2408 (1991).Google Scholar
13. Vechten, J. A. Van, Zook, J. D., Horning, R. D. and Goldenberg, B., Jap. J. Appl. Phys. 31 3662 (1992).Google Scholar
14. Antell, G. R., Briggs, A. T. R., Butler, B. R., Kitching, S. A., Stagg, J. P., Chew, A. and Sykes, D. E., Appl. Phys. Lett. 53 758 (1988).Google Scholar
15. Cole, S., Evans, J. S., Harlow, M. J., Nelson, A. W. and Wang, S., Electronics Lett. 24 813 (1988).CrossRefGoogle Scholar
16. Glade, M., Grutzmacher, D., Meyer, R., Woelk, E. G. and Balk, P., Appl. Phys. Lett. 54 2411 (1989).CrossRefGoogle Scholar
17. Clerjaud, B., Physica B170 383 (1991).Google Scholar
18. Pearton, S. J., Hobson, W. S. and Abernathy, C. R., Appl. Phys. Lett. 61 1588 (1992).Google Scholar
19. Pearton, S. J., Mat. Sci. Rep. 4 313 (1990).Google Scholar
20. Abernathy, C. R., Wisk, P., Pearton, S. J. and Ren, F., J. Vac. Sci. Technol B (March/April 1993).Google Scholar
21. Dautremont-Smith, W. C., Lopata, J., Pearton, S. J., Koszi, L. A., Stavola, M. and Swaminathan, V., J. Appl. Phys. 66 1993 (1989).Google Scholar
22. Woodhouse, J. D., Donnelly, J. P. and Iseler, G. W., Solid State Electron. 31 13 (1988).CrossRefGoogle Scholar
23. Focht, M. W., Macrander, A. T., Schwartz, B. and Feldman, L. C., J. Appl. Phys. 55 3859 (1984).CrossRefGoogle Scholar
24. Rao, M. V., Baba, R. S., Dietrich, H. B. and Thompson, P. E., J. Appl. Phys. 64 4755 (1988).Google Scholar
25. Zundel, T. and Weber, J., Phys. Rev. B 39 13549 (1989).Google Scholar