Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T13:39:00.379Z Has data issue: false hasContentIssue false

Effects of Ion Irradiation on Supported Carbon Nanotubes and Nanotube-Substrate Interfaces

Published online by Cambridge University Press:  15 March 2011

A. V. Krasheninnikov
Affiliation:
Accelerator Laboratory, P.O. Box 43, FIN-00014University of Helsinki, Finland
K. Nordlund
Affiliation:
Accelerator Laboratory, P.O. Box 43, FIN-00014University of Helsinki, Finland
J. Keinonen
Affiliation:
Accelerator Laboratory, P.O. Box 43, FIN-00014University of Helsinki, Finland
Get access

Abstract

We employ molecular dynamics to study the effects of ion irradiation on carbon nanotubes lying on different substrates. We show that defect production depends on the type of the substrate and that the damage is higher for metallic heavy-atom substrates than for light-atom substrates, since in the former case sputtered metal atoms and backscattered recoils produce extra damage in the nanotube. We further study the behavior of defects and demonstrate that although ions may severely damage nanotubes in a local region, the nanotube carbon network can heal such a strong localized damage due to defect migration and dangling bond saturation. Finally, we predict the pinning of nanotubes to substrates by forming nanotube-substrate bonds which appear near irradiation-induced defects.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C., and Ajayan, P. M., Science 288, 1226 (2000).Google Scholar
2. Terrones, M., Banhart, F., Grobert, N., Charlier, J.-C., Terrones, H., and Ajayan, P., submitted for publication (2001).Google Scholar
3. Stahl, H., Appenzeller, J., Martel, R., Avouris, P., and Lengeler, B., Phys. Rev. Lett. 85, 5186 (2000).Google Scholar
4. Ajayan, P. M., Ravikumar, V., and Charlier, J.-C., Phys. Rev. Lett. 81, 1437 (1998).Google Scholar
5. Kiang, C.-H., Goddard, W., Beyers, R., and Bethune, D., J. Phys. Chem 100, 3749 (1996).Google Scholar
6. Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., and Zuppiroli, L., Appl. Phys. A: (Mater. Sci. Process.) 69, 255 (1999).Google Scholar
7. Yun, W. S., Kim, J., Park, K. H., Ha, J. S., Ko, Y. J., Park, K., Kim, S. K., Doh, Y. J., Lee, H. J., Salvetat, J., and Forro, L., J. Vac. Sci. Technol. A 18, 1329 (2000).Google Scholar
8. Krasheninnikov, A. V., Nordlund, K., Sirviö, M., Salonen, E., and Keinonen, J., Phys. Rev. B 63, 245405 (2001).Google Scholar
9. Choi, H. J., Ihm, J., Louie, S., and Cohen, M., Phys. Rev. Lett. 84, 2917 (2000).Google Scholar
10. Anantram, M. P. and Govindan, T. R., Phys. Rev. B 58, 4882 (1998).Google Scholar
11. Orlikowski, D., Mehrez, H., Taylor, J., Guo, H., Wang, J., and Roland, C., Phys. Rev. B 63, 155412 (2001).Google Scholar
12. Venema, L. C., Janssen, J. W., Buitelaar, M. R., Wildöer, J. W. G., Lemay, S. G., Kouwenhoven, L. P., and Dekker, C., Phys. Rev. B 62, 5238 (2000).Google Scholar
13. Hubler, U., Jess, P., Lang, H. P., Güntherodt, H.-J., Salvetat, J.-P., and Forró, L., Carbon 36, 697 (1998).Google Scholar
14. Paulson, S., Helser, A., Nardelli, M., Taylor, R., Falvo, M., Superfine, R., and Washburn, S., Science 1742, 1742 (2000).Google Scholar
15. Nordlund, K., Keinonen, J., and Mattila, T., Phys. Rev. Lett. 77, 699 (1996).Google Scholar
16. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Oxford University Press, Oxford, England, 1989).Google Scholar
17. Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
18. Albe, K., Nordlund, K., and Averback, R. S., Phys. Rev. B., submitted for publication (2001).Google Scholar
19. Nordlund, K., Ghaly, M., Averback, R. S., Caturla, M., Rubia, T. Diaz de la, and Tarus, J., Phys. Rev. B 57, 7556 (1998).Google Scholar
20. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. van, DiNola, A., and Haak, J. R., J. Chem. Phys. 81, 3684 (1984).Google Scholar
21. Satishkumar, B. C., Vogl, E. M., Govindaraj, A., and Rao, C. N. R., J. Phys. D: Appl. Phys 29, 3173 (1996).Google Scholar
22. Berish, R., Sputtering by Particle Bombardment (Springer, Berlin, 1981).Google Scholar