No CrossRef data available.
Published online by Cambridge University Press: 15 March 2011
We employ molecular dynamics to study the effects of ion irradiation on carbon nanotubes lying on different substrates. We show that defect production depends on the type of the substrate and that the damage is higher for metallic heavy-atom substrates than for light-atom substrates, since in the former case sputtered metal atoms and backscattered recoils produce extra damage in the nanotube. We further study the behavior of defects and demonstrate that although ions may severely damage nanotubes in a local region, the nanotube carbon network can heal such a strong localized damage due to defect migration and dangling bond saturation. Finally, we predict the pinning of nanotubes to substrates by forming nanotube-substrate bonds which appear near irradiation-induced defects.