Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:08:02.161Z Has data issue: false hasContentIssue false

The Effects of Interstitial Content and Annealing on the Flow and Fracture behavior of Polycrystalline ÿ-NiAl

Published online by Cambridge University Press:  22 February 2011

M. L. Weaver
Affiliation:
University of Florida, Gainesville, FL 32611–2066
V. Levit
Affiliation:
University of Florida, Gainesville, FL 32611–2066
M. J. Kaufman
Affiliation:
University of Florida, Gainesville, FL 32611–2066
R. D. Noebe
Affiliation:
NASA-Lewis Research Center, Cleveland, OH 44135–3191
Get access

Abstract

The strain aging behavior of three polycrystalline NiAl alloys has been investigated at temperatures between 300 and 1200 K. Yield stress plateaus, yield stress transients upon a tenfold increase in strain rate, work hardening peaks, and dips in the strain rate sensitivity (SRS) have been observed between 700 and 800 K. These observations are indicative of dynamic strain aging (DSA) and are discussed in terms of conventional strain aging theories.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rodriquez, P., Bull. Mat. Sci. 6, 653 (1984).Google Scholar
2. Margevicius, R. W. and Lewandowski, J. J., Acta Melall. Mater. 41, 485 (1993).Google Scholar
3. Margevicius, R. W. and Lewandowski, J. J., Scripta Metal I. Mater. 25, 2017 (1991).Google Scholar
4. Margevicius, R. W., Lewandowski, J. J., Locci, I. E. and Noebe, R. D., Scripta Metall. Mater. 29, 1309 (1993).Google Scholar
5. Margevicius, R. W., Lewandowski, J. J. and Locci, I. E., Structural Intermetallics, Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B. and Nathal, M. V., Eds., The Minerals, Metals and Materials Society, Seven Springs, PA, p. 577 (1993).Google Scholar
6. Weaver, M. L., Noebe, R. D., Lewandowski, J. J., Oliver, B. F. and Kaufman, M. J., Mater. Sci. Eng., in press (1994).Google Scholar
7. Weaver, M. L., Kaufman, M. J. and Noebe, R. D., submitted to Acta. Metall. Mater., (1994).Google Scholar
8. Noebe, R. D. and Garg, A., Scripta Metall. Mater. 30, 815 (1994).Google Scholar
9. Noebe, R. D. and Behbehani, M. K., Scripta Metall. Mater. 27, 1795 (1992).Google Scholar
10. Rozner, A. G. and Wasilewski, R. J., J. Inst. Metals 94, 169 (1966).Google Scholar
11. Hahn, K. H. and Vedula, K., Scripta Metall. 23, 7 (1989).Google Scholar
12. Dollar, M., Dymek, S., Hwang, S. J. and Nash, P., Metall. Trans. A 24 A, 1993 (1993).Google Scholar
13. Pascoe, R. T. and Newey, C. W. A., Metal. Sci. J. 2, 138 (1968).Google Scholar
14. Noebe, R. D., Bowman, R. R. and Nathal, M. V., Int. Mater. Rev. 38, 193 (1993).Google Scholar
15. Weaver, M. L., unpublished research, University of Florida (1994).Google Scholar
16. Hack, J. E., Brzeski, J. M. and Darolia, R., Scripta Metall. Mater. 27, 1259 (1992).Google Scholar
17. Hack, J. E., Brzeski, J. M., Darolia, R. and Field, R. D., High-Temperature Ordered Intermetallics V, Baker, I., Darolia, R., Whittenberger, J. D. and Yoo, M. H., Eds., Materials Research Society, Boston, MA, p. 1197 (1993).Google Scholar
18. Hack, J. E., Brzeski, J. M. and Darolia, R., Mater. Sci. Eng., in press (1994).Google Scholar
19. Kitano, K. and Pollock, T. M., Structural Intermetallics, Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B. and Nathal, M. V., Eds., The Minerals, Metals and Materials Society, Seven Springs, PA, p. 591 (1993).Google Scholar
20. Kitano, K., Pollock, T. M. and Noebe, R. D., Scripta Metall. Mater. 31, 397 (1994).Google Scholar
21. Brzeski, J. M., Hack, J. E., Darolia, R. and Field, R. D., Mater. Sci. Eng. A170, 11 (1993).Google Scholar
22. Kubin, L. P. and Estrin, Y., J. Phys. III 1, 929 (1991).Google Scholar
23. McCormick, P. G., Acta Metall. 20, 351 (1972).Google Scholar