Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:36:23.190Z Has data issue: false hasContentIssue false

The Effects of Impurity Codoping on the Electrical Properties of Erbium Ions in Crystalline Silicon

Published online by Cambridge University Press:  10 February 2011

S. Libertino
Affiliation:
Dipartimento di Fisica, Università di Catania, Corso Italia 57, 1–95129, Catania, Italy
S. Coffa
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 1–95121, Catania, Italy
R. Mosca
Affiliation:
CNR-MASPEC, Via Chiavari 18a, 1-43100, Parma, Italy
E. Gombia
Affiliation:
CNR-MASPEC, Via Chiavari 18a, 1-43100, Parma, Italy
Get access

Abstract

We have investigated the effects of oxygen codoping and thermal annealing on the deep level spectrum and carrier lifetime of Er implanted crystalline Si. It is found that oxygen codoping produces a dramatic modification in the concentration and energetic position of Er-related deep levels in the Si band gap. In particular the formation of Er-O complexes is shown to produce a promotion from deep to shallow levels. This effect is the major responsible of the enhancement of Er donor behaviour in presence of oxygen and also produces a large increase in the minority carrier lifetime

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rare Earth Doped Semiconductors, vol.301, Materials Research Society Symp. Proc. edited by Pomrenke, G. S., Klein, P. B., D. W. Langer (1993)Google Scholar
[2] Chang, S. J. and Takahei, K., Appl. Phys. Lett. 65, 433 (1994)Google Scholar
[3] Issiki, H., Kobayashi, K., Yugo, S., Kimura, T. and Ikoma, T., Appl. Phys. Lett. 58, 484 (1991)Google Scholar
[4] Michel, J., Benton, J. L., Ferrante, R. I., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M. and Kimerling, L. C., J. Appl. Phys. 70, 2672 (1991)Google Scholar
[5] Coffa, S., Priolo, F., Franzò, G., Bellani, V., Camera, A., Spinella, C., Phys. Rev. B 48, 11782 (1993)Google Scholar
[6] Polman, A., Custer, J.S., Snoeks, E., Van den Hoven, G.N., Nucl. Instr. Meth. B 80, 653 (1993)Google Scholar
[7] Yassievich, I. N. and Kimerling, L. C., Semiconductor Sci. Technol. 8, 718 (1993)Google Scholar
[8] Libertino, S., Coffa, S., Franzò, G., Priolo, F., J. Appl. Phys. 78, 3867 (1995)Google Scholar
[9] Priolo, F., Franzò, G., Coffa, S., Polman, A., Libertino, S., Barklie, R. and Carey, D., J. Appl. Phys. 78, 3874 (1995)Google Scholar
[10] Coffa, S., Franzò, G., Priolo, F., Polman, A. and Serna, R., Phys. Rev B 49, 16313 (1994)Google Scholar
[11] Michel, J., Ren, F. Y. G., Zhang, B., Jacobson, D. C., Poate, J. M. and Kimerling, L. C., Proceedings of ICDS 17 Grumden (Austria)Google Scholar
[12] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 108 (1981)Google Scholar
[13] Benton, J. L., Michel, J., Kimerling, L. C., Jacobson, D. C., Xie, Y. H., Eaglesham, D. J., Fitzgerald, E. A. and Poate, J. M., J. Appl. Phys. 70, 2667 (1991)Google Scholar
[14] Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M., and Citrin, P. H., Appl. Phys. Lett. 61, 2181 (1992)Google Scholar
[15] Borghesi, A., Pivac, B., Sassella, A. and Stella, A., J. Appl. Phys. 77, 4169 (1995) and reference therein.Google Scholar