Published online by Cambridge University Press: 01 February 2011
In this work nanoclusters of vanadium dioxide (VO2) buried in 200 nm thick SiO2 on silicon have been irradiated with increasing fluences of He ions. The projected range of He was chosen to be 650 nm in order to avoid residual He in the VO2 nanoclusters and the surrounding SiO2. The VO2 nanoclusters have been synthesized by sequential ion implantation of the elements vanadium and oxygen followed by a rapid thermal annealing step. Irradiation with He ions leads to the generation of reversible lattice point defects in the nanocrystalline VO2 precipitates. Simultaneously there is no electronic doping by He incorporation. The effect of the local- and long-range structural disorder on the metal-to-insulator phase transition has been investigated as a function of He fluence by μ-Raman spectroscopy and temperature dependent spectral ellipsometry. The disappearance of a low-frequency Raman mode indicates increasing disorder in the long-range crystal structure due to He irradiation. At the same time the thermal hysteresis of the metal-to-insulator transition narrows.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.