Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:22:40.919Z Has data issue: false hasContentIssue false

Effects of Grain Boundaries in GaAs Solar Cells

Published online by Cambridge University Press:  15 February 2011

John P. Benner
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
A. Eugene Blakeslee
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
Get access

Abstract

Many problems exist in current attempts to develop polycrystalline GaAs as a basis for thin-film solar cells. Some of these problems arise from the direct interaction of carriers, both dark and photo-generated, with grain boundaries. Others are more indirect; e.g., shunting currents due to the grain boundary-enhanced diffusion of contaminating impurities. This paper describes several of these effects, including the influence of system chemistry on grain properties, the correlation of device parameters with grain size, and grain boundary passivation experiments. A review of various approaches to solving the problems confronting the field is given, and an attempt is made to interpret reported observations in terms of existing theoretical models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Woodall, J. M. and Hovel, H. J., Appl. Phys. Lett. 30, 492 (1977).Google Scholar
2. Sahai, R., Edwall, D. D. and Harris, J. S. Jr., Proc. 13thIEEE Photovoltaic Specialists Conf., p. 946 (1978).Google Scholar
3. Woodall, J. M. and Hovel, H. J., J. Vac. Sci. Technol. 12, 1000 (1975).CrossRefGoogle Scholar
4. Fan, J. C. C., Bozler, C. O. and McClelland, R. W., Proc. 15th IEEE Photovoltaic Specialists Conf., p. 666 (1981).Google Scholar
5. Hovel, H. J., Solar Energy 19, 605 (1977).Google Scholar
6. Lanza, C. and Hovel, H. J., IEEE Trans. Elec. Dev. ED24, 392 (1977);Google Scholar
6a ED27, 2085 (1980).Google Scholar
7. Amick, J. A., RCA Rev. 24, 555 (1963).Google Scholar
8. Nicoll, F. H., J. Electrochem. Soc. 110, 1165 (1963).Google Scholar
9. Vohl, P., Perkins, D. M., Ellis, S. G., Addiss, R. R., Hui, W. and Noel, G., IEEE Trans. Elec. Dev. ED14, 26 (1967).Google Scholar
10. Cohen, M. J., Paul, M. D., Miller, D. L., Waldrop, J. R. and Harris, J. S. Jr., J. Vac. Sci. Technol. 17, 899 (1980).Google Scholar
11. Chu, S. S., Chu, T. L, Yang, H. T. and Hong, K. H., J. Electrochem. Soc. 125, 1668 (1978).Google Scholar
12. Pande, K. P., Reep, D. H., Shastry, S. K., Weiner, A. S., Borrego, J. M. and Ghandhi, S. K., Proc. 14th IEEE Photovoltaic Specialists Conf., p. 1324 (1980).Google Scholar
13. Dapkus, P. D. et al. , Proc. 13th IEEE Photovoltaic Specialists Conf., p. 960 (1978).Google Scholar
14. Blakeslee, A. E. and Vernon, S. M., IBM J. Res. Develop. 22, 346 (1978).Google Scholar
15. Vernon, S. M., Blakeslee, A. E. and Hovel, H. J., J. Electrochem. Soc. 126, 703 (1979).Google Scholar
16. Chu, S. S., SERI Subcontract No. XS–0–9002–3, Annual Project Report, March 1981.Google Scholar
17. Blakeslee, A. E. and Vernon, S. M., Solar Cells 1, 81 (1979/1980).CrossRefGoogle Scholar
18. Ghandhi, S. K. and Borrego, J. M., SERI Subcontract No. XS–0–9002–4, Annual Project Report, June 1981.Google Scholar
19. Chu, S. S., Chu, T. L. and Lee, Y. T., IEEE Tran. Elec. Dev., ED27 640 (1980).Google Scholar
20. Salerno, J., Gale, R. P., Fan, J. C. C. and Vaughan, J., Materials Research Society Meeting, Boston, 1980.Google Scholar
21. Harris, J. S. et al. , SERI Subcontract No. XS–9–8032–I, Final Report, February 1981.Google Scholar
22. Fletcher, R. M., Wagner, D. K. and Ballantyne, J. M., Solar Cells, 1, 263, (1979/1980).Google Scholar
23. Seager, C. H., Pike, G. E. and Ginley, D. S., Phys. Rev. Lett. 43, 532 (1979).Google Scholar
24. Yang, J. J. J., Dapkus, P. D., Dupuis, R. D. and Yingling, R. D., J. Appl. Phys. 51, 3794 (1980).CrossRefGoogle Scholar
25. Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
26. Spicer, W. E., Lindau, I., Skeath, P. and Su, C. Y., J. Vac. Scd. Technol. 17, 1019 (1980).Google Scholar
27. Borrego, J. M., Bhat, K. N. and Schaefer, C., Solid State Electron. (to be published).Google Scholar
28. Fossum, J. G. and Lindholm, F. H., IEEE Elec. Dev. Lett. EDLl, No. 12, 267 (1980).Google Scholar
29. Panayotatos, P. and Card, H. C., IEEE Elec. Dev. Lett. EDL1, No. 12, 163 (1980).CrossRefGoogle Scholar
30. Weiner, A. S. et al. , IEEE Trans. Elec. Dev. ED27, 2281 (1980).Google Scholar
31. Seager, C. H. and Ginley, D. S., Appl. Phys. Lett. 34, 337 (1979).CrossRefGoogle Scholar
32. Fan, J. C. C., private communication.Google Scholar
33. McPherson, J. W. et al. , Extended Abstracts, Vol. 80–1, Electrochemical Society Spring Meeting (1980).Google Scholar
34. Kazmerski, L. L. and Ireland, P. J., J. Vac. Sci, Technol. 17, 525 (1980).Google Scholar