Published online by Cambridge University Press: 01 January 1993
A series of hydrogenated amorphous silicon carbide (a-Si1–xCx:H) films was deposited by rf glow discharge deposition using various pressures, electrode spacings and hydrogen dilution ratios. We found that improvement of the structure by hydrogen dilution is more effective when a large electrode spacing is applied. In the case of undiluted a-SiC:H, the product of pressure and electrode spacing appears to be the important parameter. Dilution causes an increase of the photoconductivity. The band gap decreases but increases again for highly diluted samples. A striking result is that the Fourier transform infra-red spectroscopy (FTIR) bands assigned to CHX and SiHx increase upon dilution when a small electrode spacing is applied, although the hydrogen content is reduced. It is shown that this is due to an increase of the density of the films and to an increase of the amount of carbon built into the bulk instead of into voids. The combination of decreasing hydrogen content, void fraction and increasing amount of carbon atoms into the bulk explains the behaviour of the photoconductivity and band gap as a function of H2 dilution.