Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T05:33:08.829Z Has data issue: false hasContentIssue false

The Effects of Dry Density and Porewater Salinity on the Physical and Microbiological Characteristics of Compacted 100% Bentonite

Published online by Cambridge University Press:  19 October 2011

Simcha Stroes-Gascoyne
Affiliation:
[email protected], Atomic Energy of Canada Limited, EB&AB, Whiteshell Laboratories, 1 Ara Mooradian Way, Pinawa, R0E 1L0, Canada, 204 753 2311, 204 753 2690
C.J. Hamon
Affiliation:
[email protected], Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, MB, R0E 1L0, Canada
D.A. Dixon
Affiliation:
[email protected], Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, MB, R0E 1L0, Canada
C.L. Kohle
Affiliation:
[email protected], Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, MB, R0E 1L0, Canada
P. Maak
Affiliation:
[email protected], Ontario Power Generation, 700 University Avenue, Toronto ON, M5G 1X6, Canada
Get access

Abstract

This study examined the conditions required to suppress microbial activity in compacted bentonite, such that microbially influenced corrosion (MIC) of copper waste containers, surrounded by compacted bentonite in a future deep geologic repository, would become insignificant. Experiments were carried out to determine the effects of dry density and porewater salinity on swelling pressure, water activity (aw) and the culturable microbial community in compacted bentonite. A dry density ³ 1.6 g/cm3 ensures that aw is < 0.96 and the swelling pressure > 2 MPa. Both conditions suppress microbial culturability below background levels (2.1 x 102 Colony-Forming Units/g) in as-purchased bentonite. Under such conditions, cells likely survive as dormant cells or inactive spores, which greatly reduces the possibility of significant MIC. Observations in natural clay-rich environments support these findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stroes-Gascoyne, S. and King, F. In: CORROSION/2002, NACE Int., p.97 (2002).Google Scholar
2. Stroes-Gascoyne, S., Pedersen, K., Haveman, S.A., Daumas, S., Hamon, C.J., Arlinger, J., Ekendahl, S., Hallbeck, L., Gahroni, N., Delaney, T.L. and Dekeyser, K.. Can. J. Microbiol. 43, 1133–1146 (1997).Google Scholar
3. Pedersen, K., Motamedi, M., Karnland, O. and Sanden, T.. Eng. Geol. 58, 149–161 (2000).Google Scholar
4. Hedin., A. Proc. International High-Level Radioactive Waste Management Conference, Las Vegas, NV, April 30 – May 04, 2006, 10041010 (2006).Google Scholar
5. Chapelle., F.H. Ground-water microbiology and geochemistry. John Wiley and Sons, New York, NY (1993), 181.Google Scholar
6. Fredrickson, J.K., McKinley, J.P., Bjornstad, B.N., Long, P.E., Ringelberg, D.B., White, D.C., Krumholtz, L.R., Suflita, J.M., Colwell, F.S., Lehman, R.M., Phelps, T.J. and Onstott., T.C. Geomicrobiol. J. 14, 183–202 (1997).Google Scholar
7. Brown., D.A. Microbial Water Stress Physiology. John Wiley, Chichester (1990).Google Scholar
8. Choi, J-W., and Oscarson, D.W. J. Contam. Hydrol. 22, 189–202 (1996).Google Scholar
9. Reasoner, D.J. and Geldreich., E.E. Appl. Environ. Microbiol. 49 17 (1985).Google Scholar
10. Stroes-Gascoyne, S., Hamon, C.J., Kohle, C. and Dixon., D.A. The effects of dry density and porewater salinity on the physical and microbiological characteristics of highly compacted bentonite. Ontario Power Generation Report 06819-REP-01200-10016 (2006).Google Scholar
11. Krumholtz, L.R., McKinley, J.P., Ulrich, G.A. Suflita., J.M. Nature 38, 64–66 (1997).Google Scholar
12. Miller, W., Alexander, R., Chapman, N., McKinley, I. and Smellie., J.T. Geological disposal of radioactive wastes and natural analogues. Lessons from Nature and Archaeology. Elsevier/ Pergamon, Amsterdam (2000).Google Scholar
13. Milodowski, A.E., Styles, M.T., Werme, L. and Oversby, V.M.. 2003. Corrosion 2003, Paper 03681, NACE International (2003).Google Scholar
14. Boivin-Jahns, V., Ruimy, R., Bianchi, A., Daumas, S. and Christen., R. Appl. Environ. Microbiol. 62, 3405–3412 (1996).Google Scholar
15. Stroes-Gascoyne, S., Schippers, A., Schwyn, B., Poulain, S., Sergeant, C., Le Marrec, C., Simonoff, M., Altmann, S., Nagaoka, T., Mauclaire, L., McKenzie, J., Daumas, S., Vinso, A., Beauclaire, C., Matray., J.M. Geomicrobiol. J. 24, 1–17 (2007).Google Scholar
16. Fukunaga, S., Jintoku, T., Iwata, Y., Nakayama., M. Geomicrobiol. J. 22, 361 (2005).Google Scholar
17. Kjartanson, B.H., Dixon, D.A. and Stroes-Gascoyne., S. Effects of container/buffer gap fill onbuffer performance. Ontario Power Generation Report, 06819-REP-01200-10102-R00 (2003).Google Scholar