Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:45:09.118Z Has data issue: false hasContentIssue false

Effects of Ce-Based Dopants on the Hydrogen Storage Material of NaAlH4

Published online by Cambridge University Press:  18 May 2012

Jianjiang Hu
Affiliation:
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
Raiker Witter
Affiliation:
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany Technomedicum, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Shuhua Ren
Affiliation:
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
Maximilian Fichtner
Affiliation:
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
Get access

Abstract

Cerium in various chemical forms was introduced into NaAlH4 to study the hydrogen sorption properties of the resulted material. Although all the Ce precursors tested in this work resulted in a reversible hydrogen storage material, an immediate enhancement in the desorption kinetics could be achieved by a heating treatment, resulting in the in situ formation of cerium aluminide (CeAl4) in the material. While the use of CeAl4 instead of CeCl3 can increase the hydrogen capacity by bypassing the formation of the ineffective NaCl, the highest capacity of 4.9 wt% was obtained from NaAlH4 doped directly with commercial metallic cerium, which may provide a much simplified process for a possible up-scaling preparation of this hydrogen storage material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353358.Google Scholar
(2) Grochala, W.; Edwards, P. P. Chemical reviews 2004, 104, 1283–316.Google Scholar
(3) Fichtner, M. Journal of Alloys and Compounds 2011, 509, S529S534.Google Scholar
(4) Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M. Angewandte Chemie (International ed. in English) 2005, 44, 4745–9.Google Scholar
(5) Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. Chemical Society reviews 2010, 39, 656–75.Google Scholar
(6) Jena, P. The Journal of Physical Chemistry Letters 2011, 2, 206211.Google Scholar
(7) Barkhordarian, G.; Klassen, T.; Dornheim, M.; Bormann, R. Journal of Alloys and Compounds 2007, 440, L18L21.Google Scholar
(8) Bogdanovic, B.; Schwickardi, M. Journal of Alloys and Compounds 1997, 253-254, 19.Google Scholar
(9) Bogdanović, B.; Felderhoff, M.; Kaskel, S.; Pommerin, a.; Schlichte, K.; Schüth, F. Advanced Materials 2003, 15, 10121015.Google Scholar
(10) Leon, a.; Rothe, J.; Fichtner, M. Journal of Physical Chemistry C 2007, 111, 1666416669.Google Scholar
(11) Sandrock, G. Journal of Alloys and Compounds 2002, 339, 299308.Google Scholar
(12) Majzoub, E.; Gross, K. Journal of Alloys and Compounds 2003, 356-357, 363367.Google Scholar
(13) Balde, C. P.; Stil, H. A.; Eerden, A. M. J. V. D.; Jong, K. P. D.; Bitter, J. H. J. Phys. Chem. C 2007, 27972802.Google Scholar
(14) Fan, X.; Xiao, X.; Chen, L.; Yu, K.; Wu, Z.; Li, S.; Wang, Q. Chemical communications (Cambridge, England) 2009, 6857–9.Google Scholar
(15) Hu, J.; Ren, S.; Witter, R.; Fichtner, M. Advanced Energy Materials 2012, DOI: 10.1002/aenm.201100724 Google Scholar
(16) Utz, I.; Linder, M.; Hu, J. J.; Fichtner, M.; Schmidt, N.; Wörner, A. Intl J. Hydrogen Energ. 2012, in pressGoogle Scholar
(17) Bogdanović, B.; Felderhoff, M.; Pommerin, A.; Schüth, F.; Spielkamp, N.; Stark, A. Journal of Alloys and Compounds 2009, 471, 383386.Google Scholar