Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:03:45.644Z Has data issue: false hasContentIssue false

The Effects of Calcite Solid Solution Formation on the Transient Release of Radionuclides from Concrete Barriers

Published online by Cambridge University Press:  28 February 2011

Robert W. Smith
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, ID 83415
John C. Walton
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, ID 83415
Get access

Abstract

The wealhering of concrete by carbonation causes the formation of calcite solid solutions that can significantly improve concrete as a barrier to the migration of divalent radionuclide cations. Example calculations for 90Sr and 60Co indicate that release rates from carbonated concrete are five orders of magnitude lower than for intact, unweathered concrete and that the thin carbonated zone is a significant sink for these radionuclides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Glynn, P. D., Reardon, E. J., Plummer, L. N., Busenberg, E., Geochim. Cosmochim. Acta 54, 267 (1990).CrossRefGoogle Scholar
2. Glynn, P. D., Reardon, E. J., Amer. J. Sci. 290, 164 (1990).Google Scholar
3. Plummer, L. N., Busenberg, E., Geochim. Cosmochim. Acta 51, 1393 (1987).CrossRefGoogle Scholar
4. Busenberg, E., Plummer, L. N., Geochim. Cosmochim. Acta 53, 1189 (1989).Google Scholar
5. Capobianco, C., Navrotsky, A., Amer. Mineral. 72, 312 (1987).Google Scholar
6. Navrotsky, A., Capobianco, C., Amer. Mineral. 72, 782 (1987).Google Scholar
7. Anovitz, L. M., Essene, E. J., J. Petrology 28, 389 (1987).CrossRefGoogle Scholar
8. Rosenberg, P. E., Amer. Mineral. 72, 1239 (1987).Google Scholar
9. Bischoff, W. D., Mackenzie, F. T., Bishop, F. C., Geochim. Cosmochim. Acta 51, 1413 (1987).Google Scholar
10. Davies, P. K., Navrotsky, A., J. Solid State Chemistry 46, 1 (1983).CrossRefGoogle Scholar
11. Lippmann, F., N. Jb. Miner. Abh. 139, 1 (1980).Google Scholar
12. Smith, R. W., Jenne, E. A., Geol. Soc. Am. Absts. with Programs A119 (1989).Google Scholar
13. Smith, R. W., Jenne, E. A., Geochim. Cosmochim. Acta (in prep).Google Scholar
14. Sverjensky, D. A., Geochim. Cosmochim. Acta 48, 1127 (1984).Google Scholar
15. Helgeson, H. C., Am. J. Sci. 267, 729 (1969).Google Scholar
16. Wolery, T. J., UCRL-53414, 1983.Google Scholar
17. Shannon, R. D., Prewitt, C. T., Acta Cryst. B25, 925 (1969).Google Scholar
18. MacKenzie, F. T., Bischoff, W. D., Bishop, F. C., Loijens, M., Schoonmaker, J., Wollast, R., Reviews Miner. 11, 97 (1983).Google Scholar
19. Chang, L. L. Y., J. Geol. 73, 348 (1965).Google Scholar
20. Walton, J. C., Plansky, L. E., Smith, R. W., NUREG/CR-5542, 1990.Google Scholar
21. Neville, A. M., Properties of Concret, 3rd ed. (John Wiley and Sons, Inc.: New York, NY, 1981) p. 779.Google Scholar
22. Plecas, I. B., Drljaca, J. D., Kostadinovic, A. M., Peric, A. D., Granisar, L., Waste Management 87, 503 (1987).Google Scholar
23. Hietanen, R., Jaakkola, T., Miettinen, J. K., Mat. Res. Soc. Symp. Proc. 44, 891 (1985).Google Scholar
24. Jakubick, A. T., Gillham, R. W., Kahl, I., Robin, M., Mat. Res. Soc. Symp. Proc. 84, 355 (1987).Google Scholar