Published online by Cambridge University Press: 01 February 2011
Wafer-level three-dimensional (3D) integration is an emerging technology to increase the performance and functionality of integrated circuits (ICs). Aligned wafer-to-wafer bonding with dielectric polymer layers (e.g., benzocyclobutene (BCB)) is a promising approach for manufacturing of 3D ICs, with minimum bonding impact on the wafer-to-wafer alignment accuracy essential. In this paper we investigate the effects of thermal and mechanical bonding parameters on the achievable post-bonding wafer-to-wafer alignment accuracy for polymer wafer bonding with 200 mm diameter wafers. Our baseline wafer bonding process with softbaked BCB (∼35% cross-linked) has been modified to use partially cured (∼ 43% crosslinked) BCB. The partially cured BCB layer does not reflow during bonding, minimizing the impact of inhomogeneities in BCB reflow under compression and/or slight shear forces at the bonding interface. As a result, the non-uniformity of the BCB layer thickness after wafer bonding is less than 0.5% of the nominal layer thickness and the wafer shift relative to each other during the wafer bonding process is less than 1 μm (average) for 200 mm diameter wafers. The critical adhesion energy of a bonded wafer pair with the partially cured BCB wafer bonding process is similar to that with soft-baked BCB.