Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:40:15.138Z Has data issue: false hasContentIssue false

Effects of Birefringence in Ordered GaInP/AlGaInP Lasers

Published online by Cambridge University Press:  10 February 2011

A. Moritz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
R. Wirth
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
C. Geng
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
A. Hangleiter
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
Get access

Abstract

Ternary semiconductors like GaInP under certain growth conditions exhibit a (partial) chemical ordering in form of a superlattice of alternate Ga-rich and In-rich planes in (111) direction. We have performed measurements of the polarization properties of light propagating in ordered GaInP/AlGaInP quantum well waveguide structures with various amounts of strain and observed a mode conversion between transverse electric (TE) and transverse magnetic (TM) modes for light propagating along (110). Lasers built of ordered material with the cavity in this direction show a distorted polarization of the laser light which depends on ordering and strain. We show that these effects are caused by an optical birefringence due to the reduced symmetry of the ordered material which leads to a coupling of the TE and TM modes. Only a new linear combination of TE and TM modes, the “super-modes”, can propagate in the waveguide without change. Within this simple model the polarization behavior of the light in the waveguide and in lasers can be explained very well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gomyo, A., Suzuki, T., and Iijima, S., Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
2. Kondow, M., Kakibayashi, H., and Minagawa, S., J. Crystal Growth 88, 291 (1988).Google Scholar
3. Mascarenhas, A., Kurz, S., Kibbler, A., and Olson, J. M., Phys. Rev. Lett. 63, 2108 (1989).Google Scholar
4. T.Kanata, Nishimoto, M., Nakayama, H., and Nishino, T., Phys. Rev. B 45, 6637 (1992).Google Scholar
5. Mowbray, D. J., Hogg, R. A., Skolnick, M. S., DeLong, M. C., Kurtz, S. R., and Olson, J. M., Phys. Rev. B 46, 7232 (1992).Google Scholar
6. Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T., and Hamakawa, Y., Appl. Phys. Lett. 53, 2053 (1988).Google Scholar
7. Minagawa, S. and Kondow, M., Electron. Lett. 25, 758 (1989).Google Scholar
8. Geng, C., Moser, M., Winterhoff, R., Lux, E., Hommel, J., Höhing, B., Schweizer, H., and Scholz, F., J. Crystal Growth 145, 740 (1994).Google Scholar
9. Wei, S. and Zunger, A., Appl. Phys. Lett. 64, 757 (1994).Google Scholar
10. Born, M. and Wolf, E., Principles of Optics (Pergamon Press, New York, 1975).Google Scholar
11. Moritz, A. and Hangleiter, A., Appl. Phys. Lett. 66, 3340 (1995).Google Scholar
12. Ueno, Y., Appl. Phys. Lett. 62, 553 (1993).Google Scholar
13. Yariv, A., Optical Electronics (Holt, Rinehart and Winston, New York, 1985).Google Scholar
14. Forstmann, G., Barth, F., Schweizer, H., Moser, M., Geng, C., Scholz, F., and O'Reilly, E. P., Semicond. Sci. Technol. 9, 1268 (1994).Google Scholar