Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T18:45:41.473Z Has data issue: false hasContentIssue false

Effective Dielectric Function of Porous Silicon: the Transverse Component

Published online by Cambridge University Press:  28 February 2011

J.E. Lugo
Affiliation:
Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, Morelos, Mexico.
J.A. Del Río
Affiliation:
Laboratorio de Energía Solar, IIM-UNAM A.P. 34, Temixco, 62580 Morelos, Mexico.
J. Tagüeña-Martínez
Affiliation:
Laboratorio de Energía Solar, IIM-UNAM A.P. 34, Temixco, 62580 Morelos, Mexico.
J.A. Ochoa-Tapia
Affiliation:
Area de Ingenieria Qufmíca, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 04390 México, D.F. México.
Get access

Abstract

In previous works we have obtained an expression for the effective electrical conductivity of a columnar model simulating porous silicon. We used the averaging volume method that has proven to be successful in treating fluid transport in porous media. With this method we can calculate the bulk and the surface contribution to an effective transport property. The axial component can be solved analytically, but in the xY plane the calculation can only be performed numerically. However there is a certain approximation called Chang's cell (valid for high porosities) where the transverse component is also analytical. The extension of our original approach to find the axial component of the effective dielectric function is relatively simple, but the transverse component calculation presents interesting features.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T., Calcott, P.D.J. and Qteish, A., Phys. Rev. Lett 69, 1232 (1992).Google Scholar
2 Deák, P., Rosenbauer, M., Stutzmann, M., Weber, J. and Brandt, M.S., Phys. Rev. Lett. 69, 253 (1992).Google Scholar
3 Tischler, M.A., Collins, R. T., Stathis, J.H. and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
4 Buda, F., Kohnoff, J. and Parrinello, M., Phys. Rev. Lett. 69, 1272 (1992).Google Scholar
5 del Río, J.A., Tagüeña-Martínez, J. and Ochoa-Tapia, J.A., Sol. State Comm. 87, 541 (1993). J. Tagüeña-Martínez, J.A. del Río and J.A. Ochoa-Tapia, Sol. State Comm. 90, 411(1994).Google Scholar
6 Tagüeña-Martínez, J., del Río, J.A. and Lugo, J.E., J. Non-Crystalline Solids (to be published).Google Scholar
7 del Río, J.A. and Whitaker, S. (to be published).Google Scholar
8 Mochán, W.L. and Barrera, R.G., Phys. Rev. B 32, 4984 (1985). W. Xia and M.F. Thorpe, Phys. Rev. A 38, 2650 (1988).Google Scholar
9 Whitaker, S., Transport in Porous Media 1, 3 (1986).Google Scholar
10 Ochoa-Tapia, J.A., Strove, P. and Whitaker, S., Chem. Engng. Sci. 49, 709 (1994).Google Scholar
11 Ochoa-Tapia, J.A., del Río, J.A. and Whitaker, S., Chem. Engng. Sci. 48, 2061 (1993).Google Scholar
12 Jellison, G. E. Jr., Optical Materials 1, 41 (1992).Google Scholar
13 Fried, M. and Lohner, T., J. Appl. Phys. 71, 5260 (1992).Google Scholar
14 Koshida, N., Appl. Phys. Lett. 63, 2774 (1993).Google Scholar