Published online by Cambridge University Press: 28 February 2011
The Basalt Waste Isolation Project has conducted a series of hydrothermal experiments to characterize waste/barrier/rock interactions as a part of its study of the Columbia River basalts as a potential medium for a nuclear waste repository. Hydrothermal tests of 3–15 months duration were performed with light water reactor spent fuel and simulated groundwater, in combination with candidate container materials (low-carbon steel or copper) and/or basalt, in order to evaluate the effect of waste package materials on spent fuel radionuclide release behavior. Solutions were filtered through 400 and 1.8 nm filters to distinguish colloidal from dissolved species. In all experiments, 14C, 129I, and 137Cs occurred only as dissolved species, whereas the actinides occurred in 400 nm filtrates primarily as spent fuel particles. Actinide concentrations in 1.8 nm filtrates were below detection in steel-bearing experiments. In the system spent fuel + copper, apparent time-invariant concentrations of 14C and 137Cs were obtained, but in the spent fuel + steel system, the concentrations of 14C and 137Cs increased gradually throughout the experiments. In experiments containing basalt or steel + basalt, 137Cs concentrations decreased with time. In tests with copper + basalt, 14C and 129I concentrations attained time-invariant values and 137Cs concentrations decreased. Concentrations for the actinides and fission products measured in these experiments were below those calculated from Federal regulations governing radionuclide release.