Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:39:16.060Z Has data issue: false hasContentIssue false

Effect of Twin Structure on Strain Dependences of Critical Current

Published online by Cambridge University Press:  15 February 2013

Alexey V. Semenov
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kyiv 03142, Ukraine Institute of Physics, 46 Nauki Avenue, Kyiv 03028, Ukraine
Constantin G. Tretiatchenko
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kyiv 03142, Ukraine
Vassily L. Svetchnikov
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kyiv 03142, Ukraine
Volodymyr M. Pan
Affiliation:
G. V. Kurdyumov Institute for Metal Physics, 36 Vernadsky Blvd., Kyiv 03142, Ukraine
Harold Wiesmann
Affiliation:
Brookhaven National Laboratory, 76 Cornell Avenue, Upton, NY 11973, U.S.A.
Get access

Abstract

We suggest a model explaining nonlinear dependences of critical current Jc in YBCO epitaxial films. Two features of YBCO are taken into account: twin domain structure in orthorhombic phase and the anisotropy of uniaxial strain dependence of Tc. Applied strain changes elementary pinning force of the defects located at low-angle dislocation boundaries between differently oriented twin domains. Account of Tc dependence on strain this leads to approximately parabolic strain behavior of Jc. We have obtained analytical expressions for the “initial strain”, which actually describes a natural misbalance between numbers of grain boundaries separating a and b oriented domains, as well as for “strain sensitivity”, which is determined by Tc dependence on uniaxial a and b strains and by the effective redistribution of vortices. Other experimentally observed effects, such as temperature, magnetic field and two-peak strain dependences of Jc, are shown to be described in the framework of suggested model.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

van der Laan, D. C., Douglas, J. F., Clickner, C. C., Stauffer, T. C., Goodrich, L. F. and van Eck, H. J. N., Supercond. Sci. Technol. 24 032001 (2011).CrossRefGoogle Scholar
van der Laan, D. C., Haugan, T. J., Barnes, P. N., Abraimov, D., Kametani, F., Larbalestier, D. C. and Rupich, M. W., Supercond. Sci. Technol. 23 014004 (2010).CrossRefGoogle Scholar
van der Laan, D. C., Haugan, T. J. and Barnes, P. N., Phys. Rev. Lett. 103 027005 (2009).CrossRefGoogle Scholar
van der Laan, D. C., Ekin, J. W., Douglas, J. F., Clickner, C. C., Stauffer, T. C. and Goodrich, L. F., Supercond. Sci. Technol. 23 072001 (2010).CrossRefGoogle Scholar
Sugano, M., Shikimachi, K., Hirano, N. and Nagaya, S., Supercond. Sci. Technol. 23 085013 (2010).CrossRefGoogle Scholar
Meingast, C., Kraut, O., Wolf, T., Wuhl, H., Erb, A. and Muller-Vogt, G., Phys. Rev. Lett. 67 1634 (1991).CrossRefGoogle Scholar
Pashitskii, E. A. and Vakaryuk, V. I., Low Temp. Phys. 28 11 (2002).CrossRefGoogle Scholar
Fedotov, Yu. V., Ryabchenko, S. M., Pashitskii, E. A., Semenov, A. V., Vakaryuk, V. I., Flis, V. S. and Pan, V. M., Physica C 372-376 1091 (2002).CrossRefGoogle Scholar
Pan, V. M., Cherpak, Yu. V., Semenov, A. V., Pashitskii, E. A., Komashko, V. A., Pozigun, S. A., Tretiatchenko, C. G. and Pan, A. V., Phys Rev B 73 054508 (2006).CrossRefGoogle Scholar
van der Laan, D. C., Abraimov, D., Polyanskii, A. A., Larbalestier, D. C., Douglas, J. F., Semerad, R. and Bauer, M., Supercond. Sci. Technol. 24 115010 (2011).CrossRefGoogle Scholar
Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. and Vinokur, V. M., Rev. Mod. Phys. 66 1125 (1994).CrossRefGoogle Scholar