Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:55:18.393Z Has data issue: false hasContentIssue false

Effect of Thermal Degradation on the Adhesion of Polyimide'Silicon Interface

Published online by Cambridge University Press:  22 February 2011

Y Z. Chu
Affiliation:
Department of Chemical Engineering and Materials Science, Columbia University, New York, NY 10027
C. J. Durning
Affiliation:
Department of Chemical Engineering and Materials Science, Columbia University, New York, NY 10027
Get access

Abstract

The object of this work is to identify the most important structure features in the bonding of polyimide/silicon during the curing anddegradation. An essential tool for this work is a quantitative adhesion measurement which can relate the macroscopic adhesion strength to the microscopic interfacial structures. We apply the blister test forthis purpose. In particular, the test is applied to examine the effect of thermal history on the adhesion of PMDA-ODA polyimide on siliconsurface. Our studies show that the test is accurate and sensitive. The adhesion data reveal that increases in adhesion strength coincide with the formation of certain thermal degradation products as revealedin the earlier thermal degradation studies. This suggests a mechanismfor increases in adhesion strength with curing temperature, based on chemical and physical modification of the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Soane, D. and Martynenko, Z., “Polymers in Microelectronics”, Chap. 1, Elsevier, New York (1989).Google Scholar
2. Chou, N. J. and Tang, C. H., J. Vac. Sci. Technol., A2, 751 (1984).Google Scholar
3. Ho, P. S., Hahn, P. O., Bartha, J. W., Rubloff, G. W., LeGoues, F. K. and Silverman, B. D., J. Vac. Sci. Technol., A3, 739 (1985).Google Scholar
4. Bartha, J. W., Hahn, P. O., LeGoues, F., and Ho, P. S., J. Vac. Sci. Technol., A3, 1390 (1985).Google Scholar
5. Atanasoska, Lj., Anderson, S. G., Meyer, H. M. III, Lin, Z. and Weaver, J. H., J. Vac. Sci. Technol., A5, 3325 (1987).Google Scholar
6. Meyer, H. M. III, Anderson, S. G., Atanasoska, Lj and Weaver, J. H., J. Vac. Sci. Technol., A6, 30 (1988).Google Scholar
7. Buchwalter, L. P. and Greenblatt, J., J. Adhesion, 19, 257 (1986).Google Scholar
8. DiNardo, N. J., in “Metalllized Plastics 1: Fundamental and Applied Aspects,” Mittal, K. L. ed, pp. 137170, Plenum, New York, 1989.Google Scholar
9. Chu, Y Z., Jeong, H. S., White, R. C. and Durning, C. J., to appear in Metallized Plastics 3: Fundamental and Applied Aspects, edited by Mittal, K. L. (Plenum, New York, 1992).Google Scholar
10. Chu, Y Z. and Durning, C. J., J. Appl. Polym. Sci., 45, 1151 (1992).Google Scholar
11. Chu, Y. Z. and Durning, C. J., paper Presented at American Cemical Society National Meeting, UERP Symposium, August 25–30, 1991, New York. Google Scholar
12. Gent, A. and Lewandowski, L., J. Appl. Polym. Sci., 33, 1567 (1987).Google Scholar
13. Buchwalter, L. P. and Greenblatt, J., J. Adhesion, 19, 257 (1986).Google Scholar
14. Kim, K. S. and Kim, J., Trans ASME J. Eng. Mater. Technol., 110, 266 (1988).Google Scholar
15. Ehlers, G. F. L., Fisch, K. R. and Powell, W. R., J. Polym. Sci. A–1, 8, 3511 (1970).Google Scholar
16. Anderson, S. G., Meyer, H. M. III, Atanasoska, L. and Weaver, J. H., J. Vac. Sci. Technol, A6, 38 (1988).Google Scholar
17. Wu, S., “Polymer Interface and Adhesion,” Marcel Dekker, New York (1982).Google Scholar