Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:23:41.268Z Has data issue: false hasContentIssue false

Effect of the Supercooled Liquid Region on Al85Ni7Gd8 Metallic Glass Crystallization Products

Published online by Cambridge University Press:  11 February 2011

F. Q. Guo
Affiliation:
Department of Physics,, University of Virginia1, Charlottesville, Va 22903, U.S.A.
S. J Poon
Affiliation:
Department of Physics,, University of Virginia1, Charlottesville, Va 22903, U.S.A.
G. J. Shiflet
Affiliation:
Department of Materials Science and Engineering, University of Virginia1, Charlottesville, Va 22903, U.S.A.
Get access

Abstract

The effect of the supercooled liquid region on the primary crystallization of Al85Ni7Gd8 metallic glass, which exhibits a clear glass transition before its primary crystallization, was evaluated systematically under different annealing conditions, including isothermal annealing at different temperatures and non-isothermal annealing employing different heating rates. It was found that isothermal annealing within the supercooled liquid region and non-isothermal annealing at small heating rates (≤ 5 °C/min) result in the co-precipitation of fcc-Al and Al compound(s). When isothermal annealing is done at temperatures where partial crystallization is involved, or non-isothermal annealing is carried out at a larger heating rate, the primary crystallization product is a single phase of fcc-Al. The effect of the supercooled liquid region on the crystallization product is discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. He, Y., Poon, S. J. and Shiflet, G. J., Science, 241, 1640 (1988).Google Scholar
2. Inoue, A., Ohtera, K., Zhang, T. and Masumoto, T., Jpn. J. Appl. Phys., 27, L479–L482, (1988).Google Scholar
3. He, Y., Dougherty, G. M., Shiflet, G. J. and Poon, S. J., Acta Metall. Mater., 41, 337 (1993).Google Scholar
4. Kim, Y. H., Inoue, A. and Masumoto, T., Mater. Trans. JIM, 32, 331 (1991).Google Scholar
5. Chen, H., He, Y., Poon, S. J. and Shiflet, G. J., Nature, 367, 541 (1994).Google Scholar
6. Foley, J. C., Allen, D. R. and Perepezko, J. H., Scripta Mater., 35, 655 (1996).Google Scholar
7. Calin, M. and Koster, U., Mater. Sci. Forum, 269–272, 749 (1998).Google Scholar
8. Kelton, K. F., Phil. Mag. Lett., 77, 337 (1998).Google Scholar
9. Guo, F. Q., Gao, M. C., Poon, S. J. and Shiflet, G. J. (unpublished), University of VirginiaGoogle Scholar
10. Inoue, A., Nakazato, K., Kawamura, Y., Tsai, A. P. and Masumoto, T., Mater. Trans. JIM, 35, 95 (1994).Google Scholar
11. Johnson, E., Li, Q., Johnson, A. and Sarholt-Kristensen, L., Micron and Microscopica Acta, 23, 187 (1992).Google Scholar
12. Gangopadhyay, A. K. and Kelton, K. F., Phil. Mag., A80, 1193 (2000).Google Scholar
13. Hackenberg, R. E., Gao, M. C., Kaufman, L. and Shiflet, G. J., Acta Mater., 50, 2245 (2003).Google Scholar
14. Gao, M. C., Ph.D. thesis, University of Virginia, 2003.Google Scholar
15. Guo, F. Q., Poon, S. J. and Shiflet, G. J., Mater. Sci. Forum, 331–337, 31 (2000).Google Scholar
16. Masuhr, A., Waniuk, T. A., Busch, R. and Johnson, W. L., Phys. Rev. Lett., 82, 2290 (1999).Google Scholar
17. Csontos, A. A. and Shiflet, G. J., in Proceeding of Chemistry and Physics of Nanostructures and Related Non-equilibrium Materials (edt. E. Ma et. al), p. 13 (1997).Google Scholar