No CrossRef data available.
Article contents
The Effect of Terminal Ligands on the Dimensionality and Topology of Metal Dicarboxylate Coordination Structures
Published online by Cambridge University Press: 01 February 2011
Abstract
Solvothermal/hydrothermal reactions of 4, 4′-biphenyldicarboxylic acid (H2bpdc) and cobalt (II) salt with pyridine derivative ligands such as 3-methylpyridine (3-pic), 4-methylpyridine (4-pic), as well as a longer terminal ligand 4-benzylpyridine (4-bzpy) generated four new extended structures: 1D zigzag polymer chain 1 crystallized in C2/c with a formula [Co(bpdc)(3-pic)2]·(3-pic); 1D helical chain compound 2 crystallized in P41 with a formula [Co(bpdc)(4-pic)2], 2D non-interpenetrating network 3 crystallized in P2221 with a formula [Co(bpdc)(4-pic)2]·(4-pic)0.5·H2O, and 2D non-interpenetrating network 4 crystallized in P2/c, formulated as [Co(bpdc)(bzpy)2]. Our studies show that terminal ligands play an important role in affecting the dimensionality and topology of the structures formed. Magnetic susceptibility and isothermal magnetization results revealed an antiferromagnetic ground state for 3 with a transition temperature T = 4.7 K, and paramagnetic behavior at high temperature range for 1 and 2.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005