Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T19:08:07.175Z Has data issue: false hasContentIssue false

Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

Published online by Cambridge University Press:  28 March 2012

Edgar C. Hornus
Affiliation:
Departamento Materiales, Comisión Nacional de Energía Atómica, Argentina. Instituto Sabato, UNSAM / CNEA, Argentina.
C. Mabel Giordano
Affiliation:
Departamento Materiales, Comisión Nacional de Energía Atómica, Argentina. Instituto Sabato, UNSAM / CNEA, Argentina.
Martín A. Rodríguez
Affiliation:
Departamento Materiales, Comisión Nacional de Energía Atómica, Argentina. Instituto Sabato, UNSAM / CNEA, Argentina. CONICET, Argentina.
Ricardo M. Carranza
Affiliation:
Departamento Materiales, Comisión Nacional de Energía Atómica, Argentina. Instituto Sabato, UNSAM / CNEA, Argentina.
Get access

Abstract

Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and HYBRID-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion repassivation potential (ER,CREV) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy HYBRID-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. ER,CREV showed a linear decrease with temperature. There is a temperature above which ER,CREV does not decrease anymore, reaching a minimum value. This ER,CREV value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice former.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rebak, R. B., “Corrosion of Non-Ferrous Alloys. I. Nickel-, Cobalt-, Copper-, Zirconium- and Titanium-Based Alloys”, Corrosion and Environmental Degradation, Vol. II, ed. Schutze, M. (Wiley-VCH, 2000) pp. 69111.Google Scholar
2. Gordon, G. M., Corrosion, 58, 811 (2002).10.5006/1.3287662Google Scholar
3. Rebak, R. B., Paper 05610, Corrosion/2005, (NACE Intl. Houston, TX, 2005).Google Scholar
4. Carranza, R. M., Journal of Metals, 58 (January 2008).Google Scholar
5. Evans, K. J., Yilmaz, A., Day, S. D., Wong, L. L., Estill, J. C., and Rebak, R. B., Journal of Metals, 56 (January 2005).Google Scholar
6. Valen, S., and Gartland, P. O., Corrosion, 51, 750 (1995).10.5006/1.3293552Google Scholar
7. Galvele, J. R., Journal of The Electrochemical Society, 123, 464 (1976).10.1149/1.2132857Google Scholar
8. Szklarska-Smialowska, Z., Pitting and Crevice Corrosion (NACE Intl., 2005).Google Scholar
9. ASTM G48-03, “Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution” Annual Book of ASTM Standards , vol. 03.02 (West Conshohocken, PA: ASTM Intl., 2003), pp. 191201.Google Scholar
10. ASTM G192-08, “Standard Test Method for Determining the Crevice Repassivation Potential of Corrosion-Resistant Alloys Using a Potentiodynamic-Galvanostatic-Potentiostatic Technique” Annual Book of ASTM Standards , vol. 03.02 (West Conshohocken, PA: ASTM Intl., 2008).Google Scholar
11. Mishra, A. K., and Frankel, G. S., Corrosion, 64, 864 (2008).10.5006/1.3279917Google Scholar
12. Rincón Ortíz, M., Rodríguez, M. A., Carranza, R. M., and Rebak, R. B., Corrosion, 66, 105002 (2010).10.5006/1.3500830Google Scholar