Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T07:12:17.477Z Has data issue: false hasContentIssue false

Effect of SWCNT Dilution on the Resistivity of MgB2

Published online by Cambridge University Press:  15 April 2013

Danhao Ma
Affiliation:
Department of Energy Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Ruwantha Jayasingha
Affiliation:
Department of Physics & Astronomy, University of Louisville, Louisville, KY 40292, U.S.A.
Dustin Hess
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Kofi W. Adu
Affiliation:
Department of Physics, The Pennsylvania State University, Altoona College, Altoona, PA 16802, U.S.A. Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
Gamini U. Sumanasekera
Affiliation:
Department of Physics & Astronomy, University of Louisville, Louisville, KY 40292, U.S.A. Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, U.S.A.
Get access

Abstract

We report an increase in superconducting temperature of magnesium diboride (MgB2) by minute single-wall carbon nanotubes (SWCNT) inclusions. The SWCNTs concentration was varied from 0.1wt% to 1.0wt%. The temperature dependence resistivity of sintered MgB2- SWCNTs composites containing 0.1wt%, 0.5wt% and 1.0wt% were measured and compared with that of the pure MgB2. The superconducting critical temperature (Tc) of the MgB2 increased from 40 K to as high as 42.4 K for the MgB2 containing 0.5wt% of SWCNTs. The room temperature resistivity ratio (RRR) shows dependence on the sample composition. The temperature width (ΔT) decreases with increasing SWCNT content from 0.1wt% to 1.0wt%. The normal state resistivity data were fitted with the generalized Block-Grüneisen function obtaining a Debye temperature of ∼ 900K.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., Nature 354, 5658 (1991)CrossRefGoogle Scholar
Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J., Nature 410, 63 (2001)CrossRefGoogle Scholar
Xi, X.X., Rep. Prog. Phys. 71, 116501 (2008)CrossRefGoogle Scholar
Drozd, V.A., Gabovich, A.M., Gierlowski, P, Pekala, M., and Szymczak, H, Phsica CSuperconductivity and Its Applications 402, 325334 (2004)CrossRefGoogle Scholar
Poddar, A, Bandyopadhyay, B, Mandal, P, Bhattacharya, D, Choudhury, P, Sinha, U, and Ghosh, B, Phsica C-Superconductivity and Its Applications 390, 191196 (2003)CrossRefGoogle Scholar
Bud’ko, S. L., Petrovic, C., Lapertot, G., Cunningham, C. E., Canfield, P.C., Jung, M.G., and Lacerda, A. H., Phys. Rev. B 63, 220503 (2001)CrossRefGoogle Scholar
Jung, C. U., Park, M. S., Kang, W.N., Kim, M. S., Kim, K. H., Lee, S. Y., and Lee, S. I., Appl. Phys. Lett. 78, 4157 (2001)CrossRefGoogle Scholar
Takano, Y., Takeya, H., Fujii, H., Kumakura, H., Hatano, T., Togano, K., Kito, H., and Ihara, H., Appl. Phys. Lett. 78, 2914 (2001)CrossRefGoogle Scholar
Serrano, G.; Serquis, A.; Dou, S. X.; Soltanian, S.; Civale, L.; Maiorov, B.; Holesinger, T. G.; Balakirev, F.; Jaime, M.; J. Appl. Phys. 103(2), 023907 (2008)CrossRefGoogle Scholar
Dou, S. X.; Yeoh, W. K.; Shcherbakova, O.; Wexler, D.; Li, Y.; Ren, Z. M.; Munroe, P.; Chen, S. K.; Tan, K. S.; Glowacki, B. A.; MacManus-Driscoll, J. L.; Adv. Mat. 18, 785 (2006)CrossRefGoogle Scholar
Kong, Y, Dolgov, O.V, Jepsen, O, and Andersen, O.K, Physical Review B 64, 231 (2001)CrossRefGoogle Scholar
Eklund, P.C and Mabatah, A.K, Review of Scientific Instruments 48, 775777 (1977)CrossRefGoogle Scholar
Kremer, R.K, Gibson, B.J, and Ahn, K, cond-mat. 0102432 (2001)Google Scholar