Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:01:50.034Z Has data issue: false hasContentIssue false

The Effect Of Surface Oxides On Cu/Ta Interfacial Interactions

Published online by Cambridge University Press:  10 February 2011

J. Kelber
Affiliation:
Departent of Chemistry, University of North Texas, Denton, TX 76203, [email protected]
Get access

Abstract

We report results of Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) studies under ultra high vacuum (UHV) conditions which demonstrate that even submonolayer coverages of oxygen on Ta significantly degrade the strength of Cu/Ta chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta, monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of adsorbed oxygen (3L O2 at 300 K) results in a reduction of the de-wetting temperature to 500 K, while saturation oxygen coverage (10 L O2, 300 K) results in de-wetting at 400 K. Diffusion of Cu into the Ta substrate at 1100 K occurs only after a 300-second induction period at this temperature. The induction period increases to 600 sec for partially oxidized Ta and to 1200 sec for saturation oxygen coverage. TPD studies indicate no desorption of Cu for temperatures below 1300 K. The higher desorption temperature of Cu (compared to the 1150 K sublimation temperature) indicates that all the Cu originally deposited is now chemically bound to Ta.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ono, H., Nakano, T., and Ohta, T., Appl. Phys. Lett. 64, 1511 (1994).10.1063/1.111875Google Scholar
2 Hu, C.-K., Chang, S., Small, M. B., and Lewis, J. E., Proceedings of the International VLSI Multilevel Interconnection Conference, 181187 (1986).Google Scholar
3 Wong, S. S., Ryu, C., Lee, H., and Kwon, K.-W., Mater. Res. Soc. Symp. Proc. 514, 75 (1998).10.1557/PROC-514-75Google Scholar
4 Kuhn, W. K., Campbell, R. A., and Goodman, D. W., JPhys. Chem. 97, 446453 (1993).10.1021/j100104a029Google Scholar
5 Murray, E., Prasad, J., Cabibil, H., and Kelber, J. A., Surf Sci. 319, 1 (1994).10.1016/0039-6028(94)90564-9Google Scholar
6 Ruckman, M. W., Qiu, S.-L., and Strongin, M., Appl. Surf Sci. 89, 401409 (1995).10.1016/0169-4332(95)00039-9Google Scholar
7 Chen, J. G., Colaianni, M. L., Weinberg, W. H., and Yates, J. J T, Surf Sci. 279, 223232 (1992).10.1016/0039-6028(92)90548-KGoogle Scholar
8 Peden, C. H. F., Kidd, K. B., and Shinn, N. D., J. Vac. Sci. Technol. A 9, 1518 (1991).10.1116/1.577656Google Scholar
9 Gardner, D. S. and Fraser, D. F., Proceedings of the International VLSI Multilevel Interconnection Conference, 287293 (1995).Google Scholar
10 Bauer, E., Poppa, H., Todd, G., and Bonczek, F., J. Appl. Phys. 45, 5164 (1974).Google Scholar
11 Shamir, N., Lin, J. C., and Gomer, R., J Chem. Phys. 90, 5135 (1989).10.1063/1.456556Google Scholar
12 Diebold, U., Pan, J.-M., and Madey, T. E., Phys. Rev. B 47, 3868 (1993).10.1103/PhysRevB.47.3868Google Scholar
13 Hu, P., Wander, A., Garza, L. M., Bessent, M. P., and King, D. A., Surf Sci. Lett. 286, L542546 (1993).Google Scholar