Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:12:37.174Z Has data issue: false hasContentIssue false

The Effect of Strain Relaxation Mechanisms on the Electrical Properties of Epitaxial CaF2/Si(111) Heterostructures

Published online by Cambridge University Press:  10 February 2011

L. J. Schowalter
Affiliation:
Physics, Applied Physics and Astronomy Dept., Rensselaer Polytechnic Inst., Troy, NY 12180
B. M. Kim
Affiliation:
Physics, Applied Physics and Astronomy Dept., Rensselaer Polytechnic Inst., Troy, NY 12180
T. G. Thundat
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Carl A. Ventrice Jr
Affiliation:
Physics, Applied Physics and Astronomy Dept., Rensselaer Polytechnic Inst., Troy, NY 12180
V. P. LaBella
Affiliation:
Physics, Applied Physics and Astronomy Dept., Rensselaer Polytechnic Inst., Troy, NY 12180
Get access

Abstract

A new technique for growth of exactly two monolayers of CaF2 on Si(111) substrates is demonstrated. This technique takes advantage of the tendency of CaF2 to form thick islands at Si step edges on vicinal substrates once a two-monolayer thick wetting layer is deposited. A comparison of I-V characteristics for epitaxial CaF2 layers grown on on-axis versus off-axis substrates demonstrates the advantages of this technique. In addition, preliminary results for electron tunneling through the CaF2 structure is shown using the ballistic electron emission microscopy (BEEM) technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schowalter, L. J. and Fathauer, R. W., CRC Critical Rev. 15, 367 (1989).Google Scholar
[2] Suemasu, T., Watanabe, M., Suzuki, J., Kohno, Y., Asada, M., and Suzuki, N., J. Appl. Phys. 33, 57(1994).Google Scholar
[3] Kim, B.M., Ventrice, C.A. Jr, Mercer, T., Overney, R., and Schowalter, L.J., Appl. Surface Sci. 104/105, 409(1996).Google Scholar
[4] Kim, B.M., Ph.D. Thesis (Rensselaer Polytechnic Institute, unpublished, 1996).Google Scholar
[5] The wafer orientations were specified by the wafer manufacturer (Virginia Semiconductor) and are believed to be accurate to within ±0.1°.Google Scholar
[6] Ventrice, C.A. Jr, LaBella, V.P., and Schowalter, L.J., to be publ. J. Vac. Sci. Tech. (1997).Google Scholar
[7] Neave, J. H., Dobson, P. J., Joyce, B. A., and Zhang, Jing, Appl. Phys. Lett. 47, 102 (1985).Google Scholar
[8] Kim, B.M., Soss, S.R., Ovemey, R.M., and Schowalter, L.J., in Evolution of Epitaxial Structure and Morphology, ed. Zangwill, A., Jesson, D., Chambliss, D., and Clarke, R. (Mater. Res. Soc. Proc. 399, Pittsburgh, PA 1996), p. 177182.Google Scholar
[9] Tromp, R. M., LeGoues, F. K., and Reuter, M. C., Phys. Rev. Lett. 74, 2706 (1995).Google Scholar
[10] Avouris, Ph. and Wolkow, R., Appl. Phys. Lett. 55, 1074 (1989).Google Scholar
[11] Williams, E.D., Phaneuf, R.J., Wei, J., Bartelt, N.C. and Einstein, T.L, Surface Science 294. 219 (1993); and references therein.Google Scholar
[12] Kaiser, W.J. and Bell, L.D., Phys. Rev. Lett. 60, 1406 (1988);Google Scholar
Bell, L.D. and Kaiser, W.J., Phys. Rev. Lett. 61, 2368 (1988).Google Scholar
[13] Bell, L.D. and Kaiser, W.J., Annu. Rev. Mater. Sci. 26, 189 (1996).Google Scholar
[14] Gan, F., Xu, Y.-N., Huang, M.-Z., Ching, W.Y., and Harrison, J.G., Phys. Rev. B45, 8248 (1992); andGoogle Scholar
Arcangeli, C., Ossicini, S., and Bisi, O., Surf. Sci. 269/270, 743 (1992).Google Scholar
[15] Cuberes, M.T., Bauer, A., Wen, H. J., Prietsch, M., and Kaindl, G., Appl. Phys. Lett. 64 2300 (1994).Google Scholar