Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T13:06:58.522Z Has data issue: false hasContentIssue false

Effect of Silicon on the Cast Macrostructure of Fe-Si Alloys

Published online by Cambridge University Press:  21 February 2012

H. J. A. García
Affiliation:
Departamento de Ingenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria Coyoacan 04510, México D.F. Email: [email protected]
M. H. Cruz
Affiliation:
Departamento de Ingenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria Coyoacan 04510, México D.F. Email: [email protected]
A. A. Balandra
Affiliation:
Departamento de Ingenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria Coyoacan 04510, México D.F. Email: [email protected]
F. G. González
Affiliation:
Departamento de Ingenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria Coyoacan 04510, México D.F. Email: [email protected]
Y Houbaert
Affiliation:
Departamento de Ciencia e Ingenieria de Materiales, Universidad de Gante, Gante Belgica
Get access

Abstract

In this work was studied the effect of silicon content from 0.5 to 3 wt.% Si on the macrostructure of casting ingots. Fe-Si alloys with low contents of impurities were produced in electric induction furnace under inert atmosphere. Castings of 12.5 cm thick, 25 cm long and 30 cm high were obtained of each alloy poured into metallic mould. The ingots obtained were sectioned in slices of 12 cm wide, 25 cm high and 2 cm thick, the central slice of each ingot was prepared metallographically to reveal the macrostructure of the six cast alloys. The results indicate that alloys with low silicon levels (0.5 and 1.0% Si) and with small solidification intervals have relatively fine equiaxed grains, while alloys with higher silicon content and a higher solidification intervals present predominantly columnar grains. These macrostructures are not the usually structures linked to short and long freezing range. Another important result is the absence of dendritic structure usually present in cast alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beclekey, P., Electrical Steels for Rotating Machines, IEE Power and Energy Series 37, UK 2002.Google Scholar
2. AK Steel Selection of Electrical Steels for Magnetic Cores, Armco Inc. 2002. Google Scholar
3. Ruiz, D., Ros, Y.T., Cuello, G.B., Houbaert, Y., Phys. B 385-386, 570580 (2006).Google Scholar
4. Shin, J.K., Lee, Z.H., Lee, T.D. , E.J., Lavernia, Scripta Materialia, 45, 725 (2001).Google Scholar
5. Ros, Y.T., Houbaert, Y., Rodriguez, V.G., 2002 J. Applied Phys. 91 7857–.Google Scholar
6. Liang, Y.F., Zheng, Z.L., Lin, J.P., Ye, F., Chen, G.L., J. of Physics: Conference Series 144 (2009) IOP Pu.Google Scholar
7. Landgraf, J.P.V., Yonamine, T., Tanohashi, R., Silva, F.Q., Journal of Magnetism and Magnetic Materials, 254-255, 364 (2003).Google Scholar
8. Davies, G.J., Solidification and Casting, Applied Sc. Pu LTD London 1973.Google Scholar
9. Chalmers, B., Principles of Solidification, John Wiley and Sons, 1964.Google Scholar
10. Rappaz, M., Gandin, Ch.A., Desbilles, J.L. , J.L., Metallurgical and Materials Transaction A, 27A, 695 (1996).Google Scholar
11. Shibata, H., Itoyama, S., Khisimoto, Y., Takeuchi, S., Sekiguchi, H., ISIJ International, Vol. 46(6)921 (2006),Google Scholar