Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T18:56:56.113Z Has data issue: false hasContentIssue false

The Effect of Rh and Sr Substitution on the Thermoelectric Performance of LaCoO3

Published online by Cambridge University Press:  01 February 2011

Kyei-Sing Kwong
Affiliation:
[email protected], NETL, US DOE, Albany, Oregon, United States
Andrew E Smith
Affiliation:
[email protected], Oregon State University, Chemistry, Corvallis, Oregon, United States
Mas Subramanian
Affiliation:
[email protected], Oregon State University, Chemistry, Corvallis, Oregon, United States
Get access

Abstract

A series of LaCo1-xRhxO3 (x=0-1) samples and La1-ySryCo1-xRhxO3 (y = 0.05, 0.15 and x = 0.1-0.3) samples were prepared to study the effect of Rh substituion for Co in the four component system and Sr substitution for La in the five component system on the crystal structure and thermoelectric performance of the LaCoO3. At Rh substitution for Co of x=0.2 greater, the crystal structure shifts from rhombohederal (LaCoO3) to orthorhombic (LaRhO3). Thermoelectric evaluation revealed that Rh doped samples (0.3 <x <1) show large positive seebeck coefficients indicating a P-type conduction in the temperature range of the tests (273 to 775K). Rh substitution for Co decreases thermal conductivity, increases Seebeck coefficient and consequently increases the theroelectric figure of merit ZT. Sr substitution for La increases thermal and electrical conductivity and consquenently negligiblely decreases the seebeck coefficient. A thermoelectric figure-of-merit (ZT) around 0.075 has been achieved for LaCo0.5Rh0.5O3 at 775 K, and is expected to be above 0.1 at 1000 K. Sr substitution improved the TE properties throughout the lower temperature range with a ZT =0.045 observed for La0.95Sr0.05Co0.9Rh0.1O3 at 425 K and ZT = 0.05 for La0.85Sr0.15Co0.5Rh0.5O3 at 775 K. These findings provide new insight into thermoelectric perovskite oxides containing rhodium and strontium.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ferland, K. Papar, R. Industrial Energy Round Table March, 2007 Google Scholar
2 Zhang, L. Akiyama, T. International Journal of Exergy 2009, 6 (2), 214 10.1504/IJEX.2009.023999Google Scholar
3 Tritt, T. M. Subramanian, M. A. Materials Research Society Bulletin, 2006, 31, 188.10.1557/mrs2006.44Google Scholar
4 Masset, A. C. Michel, C. Maignan, A. Hervieu, M. Toulemonde, O. Studer, F. Raveau, B. and Hejtmanek, J.. Physical Review B, 2000, 62 (1), 167175.10.1103/PhysRevB.62.166Google Scholar
5 Rao, C.N.R. Seikh, Md. Motin, Narayana, C. Spin Crossover in Transition Metal Compounds II, Topics in Current Chemistry, Springer GmbH, 2004, 234, 1.Google Scholar
6 Kyomen, T. Asaka, Y. Itoh, M.. Physical Review B, 2003, 67, 144424.Google Scholar
7 Senaris-Rodriguez, M.A., Goodenough, J.B. Journal of Solid State Chemistry, 1995, 118, 323.10.1006/jssc.1995.1351Google Scholar
8 Robert, R, Bochera, L, Trottmanna, M, Rellerb, A and Weidenkaffa, A., Journal of Solid State Chemistry, 2006, 179, 3893.Google Scholar
9 Kurosaki, K. Muta, H. Uno, M. Yamanaka, S. Journal of Alloys and Compounds, 2001, 31 (5), 234. 10.1016/S0925-8388(00)01277-9Google Scholar
10 Nakamura, T. Shimura, T. Itoh, M. Takeda, Y. J. Solid State Chem., 103 (1993) 523 10.1006/jssc.1993.1131Google Scholar
11 Mary, T. A. Varadaraju, U. V. J. Solid State Chem., 110 (1994) 176 10.1006/jssc.1994.1153Google Scholar
12 He, T. Chen, J. Calvarese, T. G. Subramanian, M. A. Solid State Sciences, 2006, 8, 467.Google Scholar
13 Androulakis, J, Migiakis, P and Giapintzakis, J., Applied Physics Letters, 2004, 84, 1099.10.1063/1.1647686Google Scholar
14 Kriener, C. Zobel, A Reichl, J. Baier, M. Cwik, K. Berggold, H. Kierspel, O. Zabara, A. Lorenz, Freimuth T. Physical Review B, 2004, 69, 094417.10.1103/PhysRevB.69.094417Google Scholar
15 Iwasaki, K. Ito, T. Nagasaki, T. Arita, Y. Yoshino, M. Matsui, T. Journal of Solid State Chemistry, 2008, 181, 3145.10.1016/j.jssc.2008.08.017Google Scholar
16 Shibasaki, S., Takahashi, Y. and Terasaki, I., Journal of Physics.: Condensed Matter, 2009, 21, 115501.Google Scholar