Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T15:57:51.699Z Has data issue: false hasContentIssue false

The Effect of oxygen defects on Activity of Au/ZnO Catalyst in Low Temperature Oxidation of Benzyl Alcohol

Published online by Cambridge University Press:  09 September 2014

R. Shidpour*
Affiliation:
Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran Department of Chemistry, University of California, Riverside, USA
M. Vossoughi
Affiliation:
Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
A.R. Simchi
Affiliation:
Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Tehran, Iran Material science and engineering Department, Sharif University of Technology, Tehran, Iran
Get access

Abstract

Gold nanoparticles supported on ZnO nanostructures were prepared through a simple chemical-thermal method and characterized by SEM, TEM, XRD and photo luminescence (PL) spectroscopy. Effect of annealing temperature on catalytic activity of these Au/ZnO nanocatalysts were investigated by aerobic oxidation of benzyl alcohol. The results indicated that the catalyst with ZnO nanowire support annealed at 300 °C exhibited more activity than Au/ZnO catalyst supported on ZnO nanoparticles annealed at 600 °C. The Au/ZnO-nanowire achieved to increase the benzaldehyde selectivity and yield to 93.7 % and 85.6 %, respectively, at 60 °C whereas in Au/ZnO-nanoparticle the benzaldehyde selectivity and yield to 85.1 % and 69.9 %, respectively at 80 °C. The XRD and PL spectroscopy revealed that the supports have interstitial zinc (Zni), oxygen vacancy (Vo-2) defects definitely but there is no evidence for interstitial oxygen (Oi) and zinc vacancy (VZn) defects and single ionized charged oxygen vacancy (Vo-).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hudlicky, M., Oxidation in Organic Chemistry, American Chemical Society, Washington, DC, 1990.Google Scholar
Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Chem. Lett., 16, 405 (1987).CrossRefGoogle Scholar
Abad, A., Concepcion, P., Corma, A., Garcia, H., Angew. Chem. Int. Ed., 44, 4066 (2005).CrossRefGoogle Scholar
Miyamura, H., Matsubara, R., Miyazaki, Y., Kobayashi, S., Angew. Chem. Int. Ed., 46, 4151 (2007).CrossRefGoogle Scholar
Su, F.Z., Liu, Y.M., Wang, L.C., Cao, Y., He, H.Y., Fan, K.N., Angew. Chem. Int. Ed., 47, 334 (2008).CrossRefGoogle Scholar
Campelo, J.M., Conesa, T.D., Gracia, M.J., Jurado, M.J., Luque, R., Marinas, J.M., Romero, A.A., Green Chem., 10, 853 (2008).CrossRefGoogle Scholar
Zhu, J.J., Figueiredo, J.L., Faria, J.L., Catal. Comm., 9, 2395 (2008).CrossRefGoogle Scholar
Wang, L.C., Liu, Q., Huang, X.S., Liu, Y.M., Cao, Y., Fan, K.N., Appl. Catal. B: Environ., 88, 204 (2009).CrossRefGoogle Scholar
Huruta, M., Date, M., Appl. Catal. A: Gen., 222, 427 (2001).CrossRefGoogle Scholar
Dobrosz-Gomez, I., Kocemba, I., Rynkowski, J.M., Appl. Catal. B: Environ., 88, 83 (2009).CrossRefGoogle Scholar
Ramani, M., Ponnusamy, S., Muthamizhchelvan, C., Opti. Mater., 34, 817 (2012).CrossRefGoogle Scholar
Rauwel, E., Galeckas, A., Rauwel, P., Sunding, M.F., Fjellvag, H., J. Phys. Chem. C, 115, 25227 (2011).CrossRefGoogle Scholar
Lai, Y., Meng, M., Yu, Y., Wang, X., Ding, T., Appl. Cata. B: Environmental, 105, 335 (2011).CrossRefGoogle Scholar
Yu, W.D., Li, X.M., Gao, X.D., Qiu, P.S., Cheng, W.X., Ding, A.L., Appl. Phys. A 79, 453 (2004).CrossRefGoogle Scholar
Wang, Y.W., Zhang, L.D., Wang, G.Z., Peng, X.S., Chu, Z.Q., Liang, C.H., J. Crys. Grow., 234, 171 (2002).CrossRefGoogle Scholar
Yang, J., Liu, X., Yang, L., Wang, Y., Zhang, Y., Lang, J., Gao, M., Wei, M., J. Alloy. Comp., 485, 734 (2008).Google Scholar
Ye, J.D., Gu, S.L., Qin, F., Zhu, S.M., Liu, S.M., Zhou, X., Liu, W., Hu, L.Q., Zhang, R., Shi, Y., Zheng, Y.D., Appl. Phys. A: Mater. Sci. Process 81, 759 (2005).CrossRefGoogle Scholar
Zheng, Y., Chen, C., Zhan, Y., Lin, X., Zheng, Q., Wei, K., Zhu, J., Zhu, Y., Inorg. Chem., 46, 6675 (2007).CrossRefGoogle Scholar
Zhang, J., Sun, L., Yin, J., Su, H., Liao, C., Yan, C., Chem. Mater., 14, 4172 (2002).CrossRefGoogle Scholar
Zhang, D. H., Wang, Q. P., and Xue, Z. Y., Appl. Surf. Sci. 207, 20 (2003).CrossRefGoogle Scholar
Du, G. H., Xu, F., Yuan, Z. Y. and Van Tendeloo, G., Appl. Phys. Lett. 88, 243101 (2006).CrossRefGoogle Scholar
Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., and Gnade, B. E., J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
Zheng, N., Stucky, Galen D., Chem. Commun., 6, 3862(2007).CrossRefGoogle Scholar
Choudhary, V. R., Dhar, A., Jana, P., Jha, R. and Uphade, B. S., Green Chem., 7, 768 (2005).CrossRefGoogle Scholar
Iza, D. C., Muñoz-Rojas, D., Jia, Q., Swartzentruber, B., MacManus-Driscoll, J. L, Nano. Res. Lett. 2012, 7, 655.CrossRefGoogle Scholar