Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:33:20.811Z Has data issue: false hasContentIssue false

Effect of Nitrogen Implants on Boron Transient Enhanced Diffusion

Published online by Cambridge University Press:  17 March 2011

Omer Dokumaci
Affiliation:
IBM SRDC, Hopewell Junction, NY 12533
Paul Ronsheim
Affiliation:
IBM SRDC, Hopewell Junction, NY 12533
Suri Hegde
Affiliation:
IBM SRDC, Hopewell Junction, NY 12533
Dureseti Chidambarrao
Affiliation:
IBM SRDC, Hopewell Junction, NY 12533
Lahir Shaik-Adam
Affiliation:
Electrical Engineering Dept., University of Florida, Gainesville, FL 32611
Mark E. Law
Affiliation:
Electrical Engineering Dept., University of Florida, Gainesville, FL 32611
Get access

Abstract

The effect of nitrogen implants on boron transient enhanced diffusion was studied for nitrogen-only, boron-only, and boron plus nitrogen implants. A boron buried layer was used as a detector for interstitial supersaturation in the samples. Boron dose ranged from 1×1014 to 1×1015 cm−2 and N2+ dose from 5×1013 and 5×1014 cm−2. The energies were chosen such that the location of the nitrogen and boron peaks matched. After the implants, RTA and low temperature furnace anneals were carried out. The diffusivity enhancements were extracted from the buried layer profiles by simulation. Nitrogen-only implants were found to cause significant enhanced diffusion on the buried boron layer. For lower doses, the enhancement of the nitrogen implant is about half as that of boron whereas the enhancements are equal at higher doses. Nitrogen coimplant with boron increases the transient enhanced diffusion of boron at low boron doses, which implies that nitrogen does not act as a strong sink for excess interstitials unlike carbon. At high boron doses, nitrogen co-implant does not significantly change boron diffusion. Sheet resistance measurements indicate that low nitrogen doses do not affect the activation of boron whereas high nitrogen doses either reduce the activation of boron or the mobility of the holes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, C.T., Ma, Y., Becerro, J., Hakahara, S., Eaglesham, D.J., and Hillenius, S. J., IEEE Electron Device Lett. 18, 105 (1997).10.1109/55.556095Google Scholar
2. Murthy, C.S. (private communication).Google Scholar
3. Murakami, T., Kuroi, T., Kawasaki, Y., Inuishi, M., Matsui, Y., and Yasuoka, A., Nucl. Instr. and Meth. in Phys. Res. B 121, 257 (1997).10.1016/S0168-583X(96)00583-6Google Scholar
4. Okazaki, Y., Nakayama, S., Miyake, M., and Kobayashi, T., IEEE Trans. Electron Devices ED–41, 2369 (1994).10.1109/16.337451Google Scholar
5. Yu, B., Ju, D., Kepler, N., and Hu, C., IEEE Electron Device Lett. 18, 312 (1997).Google Scholar
6. Adam, L.S., Law, M.E., Jones, K.S., Dokumaci, O., Murthy, C.S., and Hegde, S., J. Appl. Phys. 87, 2282 (2000).10.1063/1.372173Google Scholar
7. Downey, D.F., Chow, J.W., Lerch, W., Niess, J., and Marcus, S.D., Mat. Res. Soc. Symp. Proc. vol. 525, 263 (1998).10.1557/PROC-525-263Google Scholar
8. Fair, R.B., in Impurity Doping Process in Silicon, edited by Yang, F.F. (North-Holland, Amsterdam, 1981), p. 315.10.1016/B978-0-444-86095-8.50012-4Google Scholar
9. Pelaz, L., Gilmer, G.H., Jaraiz, M., Herner, S.B., Gossmann, H.-J., Eaglesham, D.J., Holer, G., Rafferty, C.S., and Barbolla, J., Appl. Phys. Lett. 73, 1421 (1998).10.1063/1.121963Google Scholar
10. Solmi, S., Baruffaldi, F., and Canteri, R., J. Appl. Phys. 69, 2135 (1991).10.1063/1.348740Google Scholar
11. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).10.1063/1.364452Google Scholar
12. Jones, K.S., Prussin, S., and Weber, E.R., Appl. Phys. A 45, 1 (1988).10.1007/BF00618760Google Scholar
13. Nishikawa, S., Tanaka, A., and Yamaji, T., Appl. Phys. Lett. 60, 2270 (1992).10.1063/1.107051Google Scholar
14. Dokumaci, O., Rousseau, P., Luning, S., Krishnamoorthy, V., Jones, K.S. and Law, M.E., J. Appl. Phys 78, 828 (1995).10.1063/1.360271Google Scholar
15. Jones, K.S., Moller, K., Chen, J., Puga-Lambers, M., Law, M., Simons, D.S., Chi, P., Freer, B., Bernstein, J., Rubin, L., Simonton, R., Elliman, R.G., Petravic, M., and Kringhoj, P., Proc. 11th Intl. Conf. on Ion Implantation Technology, 618 (1997).Google Scholar