Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T08:24:48.087Z Has data issue: false hasContentIssue false

Effect of Nickel Silicide Induced Dopant Segregation on Vertical Silicon Nanowire Diode Performance

Published online by Cambridge University Press:  10 May 2012

W. Lu
Affiliation:
School of Electrical & Electronics Engineering, Nanyang Technological University, Singapore. Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore. GLOBALFOUNDRIES Singapore Pte. Ltd., Singapore.
K. L. Pey
Affiliation:
School of Electrical & Electronics Engineering, Nanyang Technological University, Singapore. Singapore University of Technology & Design (SUTD), Singapore.
N. Singh
Affiliation:
Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore.
K. C. Leong
Affiliation:
GLOBALFOUNDRIES Singapore Pte. Ltd., Singapore.
Q. Liu
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore.
C. L. Gan
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore.
G. Q. Lo
Affiliation:
Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore.
D. -L. Kwong
Affiliation:
Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore.
C. S. Tan
Affiliation:
School of Electrical & Electronics Engineering, Nanyang Technological University, Singapore.
Get access

Abstract

In this work, Dopant Segregated Schottky Barrier (DSSB) and Schottky Barrier (SB) vertical silicon nanowire (VSiNW) diodes were fabricated on p-type Si substrate using CMOS-compatible processes to investigate the effects of segregated dopants at the silicide/silicon interface and different annealing processes on nickel silicide formation in DSSB VSiNW diodes. With segregated dopants at the silicide/silicon interface, VSiNW diodes showed higher on-current, due to an enhanced carrier tunneling, and much lower leakage current. This can be attributed to the altered energy bands caused by the accumulated Arsenic dopants at the interface. Moreover, DSSB VSiNW diodes also gave ideality factor much closer to unity and exhibited lower electron SBH (ΦBn) than SB VSiNW diodes. This proved that interfacial accumulated dopants could impede the inhomogeneous nature of the Schottky diodes and simultaneously, minimize the effect of Fermi level pinning and ionization of surface defect states. Comparing the impact of different silicide formation annealing using DSSB VSiNW diodes, the 2-step anneal process reduces the silicide intrusion length within the SiNW by ~ 5X and the silicide interface was smooth along the (100) direction. Furthermore, the 2-step DSSB VSiNW diode also exhibited much lower leakage current and an ideality factor much closer to unity, as compared to 1-step DSSB VSiNW diode.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Song, Y., Zhou, H., Xu, Q., Niu, J., Yan, J., Zhao, C., Zhong, H., IEEE Electron Device Lett., 31, 1377 (2010).CrossRefGoogle Scholar
Tan, E. J., Pey, K. L., Singh, N., Lo, G. Q., Chi, D. Z., Chin, Y. K., Tang, L. J., Lee, P. S., Ho, C. K. F., IEEE Electron Device Lett., 29, 902 (2008).CrossRefGoogle Scholar
Chin, Y. K., Pey, K. L., Singh, N., Lo, G. Q., Tan, K. H., Ong, C. Y., Tan, L. H., IEEE Electron Device Lett., 30, 843 (2009).CrossRefGoogle Scholar
Kwong, D.-L., Li, X., Sun, Y., Ramanathan, G., Chen, Z. X., Wong, S. M., Li, Y., Shen, N. S., Buddharaju, K., Yu, Y. H., Lee, S. J., Singh, N., and Lo, G. Q., J. Nanotechnol., vol. 2012, Article ID 492121, 21 pages, 2012.CrossRefGoogle Scholar
Tu, K. N., Thompson, R. D., Tsaur, B. Y., Appl. Phys. Lett., 38, 626 (1981).CrossRefGoogle Scholar
Kim, J. R., Oh, H., So, H. M., Kim, J. J., Kim, J., Lee, C. J., Lyu, S. C., Nanotechnology, 13, 701 (2002).CrossRefGoogle Scholar
Tung, R. T., Phys. Rev. Lett., 52, 461 (1984).CrossRefGoogle Scholar
Batra, I. P., Ciraci, S., Phys. Rev. B: Condens. Matter Mater. Phys., 33, 4312 (1986).CrossRefGoogle Scholar
Chen, H. -Y., Lin, C. -Yi, Chen, M. –C., Huang, C. –C. and Chien, C. –H., J. Electrochem. Soc., 158, H840 (2011).CrossRefGoogle Scholar
Qiu, Z., Zhang, Z., Östling, M., Zhang, S. –L., IEEE Trans. Electron Devices, 55, 396 (2008).CrossRefGoogle Scholar
Knoch, J., Zhang, M., Feste, S. and Mantl, S., Microelectron. Eng., 84, 2563 (2007).CrossRefGoogle Scholar
Lavoie, C., d’Heurle, F.M., Detavernier, C., Cabral, C. Jr., Microelectron. Eng., 70, 144 (2003).CrossRefGoogle Scholar
Foggiato, J., Yoo, W. S., Ouaknine, M., Murakami, T., Fukada, T., Mater. Sci. Eng., B, 56, 114115 (2004).Google Scholar
Geng, Li, Magyari-Kope, B. and Nishi, Y., IEEE Electron Device Lett., 30, 963 (2009).CrossRefGoogle Scholar
Yun, T., Yu-Long, J., Yu, C., Fang, L., and Bing-Zong, L., Semiconductor Science and Technology, 17, 83 (2002).Google Scholar
Lu, J. P., Miles, D. S., DeLoach, J., Yue, D. F., Chen, P. J., Bonifield, T., Crank, S., Yu, S. F., Mehrad, F., Obeng, Y., Ramappa, D. A., Corum, D., Guldi, R. L., Robertson, L.S., Liu, X., Hall, L. H., Xu, Y. Q., Lin, B. Y., Griffin, A. J. Jr., Johnson, F. S., Grider, T., Mercer, D. and Montgomery, C., International Workshop on Junction Technology 2006, 127 (2006).Google Scholar
Arai, H., Kamimura, H., Sato, S., Kakushima, K., Ahmet, P., Tsutsui, K., Sugii, N., Natori, K., Hattori, T., and Iwai, H., “Annealing Reaction for Ni Silicidaton of Si Nanowire,” ECS Transactions, 25, 447 (2009).CrossRefGoogle Scholar
Lu, W., Pey, K. L., Singh, N., Leong, K. C., Gan, C. L. and Tan, C. S., IEEE Electron Device Lett., submitted (2012).Google Scholar