Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T10:44:14.075Z Has data issue: false hasContentIssue false

Effect of magnetism on precipitation of Cu in bcc Fe: Ab-initio based modeling

Published online by Cambridge University Press:  15 February 2011

O.I. Gorbatov
Affiliation:
Institute of Quantum Materials Science, Ekaterinburg 620107, Russia
A.V. Ruban
Affiliation:
Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
P.A. Korzhavyi
Affiliation:
Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
Yu.N. Gornostyrev
Affiliation:
Institute of Quantum Materials Science, Ekaterinburg 620107, Russia Institute of Metal Physics, Ural Division RAS, Ekaterinburg 620041, Russia
Get access

Abstract

Theoretical modeling of the decomposition in bcc Fe-Cu alloys has been performed using a combined approach which includes ab-initio calculations of the effective cluster interactions and statistical-mechanical (Monte Carlo) simulations. We showed that the effective Cu-Cu and Cu-vacancy interactions in the bcc Fe matrix have a strong dependence on the global magnetic state of iron. As a result, all the related thermodynamic properties of the alloys (such as solubility limit and diffusivity) are expected to have a pronounced non-Arrhenius temperature behavior, originated from variation of the global magnetization with temperature. We find that strong Cu-vacancy interactions in the bcc Fe matrix lead to a remarkable effect of vacancies on the Cu precipitation and significantly modify the alloy decomposition kinetics under irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lahiri, S.K. and Fine, M.E., J. Met. 21, A132 (1969).Google Scholar
2 Vaynman, S., Uslander, I., Fine, M.E., Proceedings of 39th Mechanical Working and Steel Processing Conference, p.1183, ISS, Indianapolis, Indiana (1997); S. Vaynman, R.S. Guico, M.E. Fine, S.J. Manganello, Metall. Trans., 28A, 1274 (1997).Google Scholar
3 Harry, T. and Bacon, D.J., Acta Mater. 50, 195 (2002); 50, 209 (2002).Google Scholar
4 Goodman, S.R., Brenner, S.S. and Low, J.R., Metall. Trans. 4, 2371 (1973).Google Scholar
5 Salje, G. and Feller-Kniepmeier, M., J. Appl. Phys. 48, 1833 (1977).Google Scholar
6 Deschamps, A., Militzer, M., and Poole, W. J., ISIJ Int. 41, 196 (2001).Google Scholar
7 Isheim, D., Gagliano, M.S., Fine, M.E., Seidman, D.N., Acta Materialia 54, 841 (2006).Google Scholar
8 Harry, T. and Bacon, D. J., Acta Mater. 50, 195 (2002); 50, 209 (2002).Google Scholar
9 Fine, M.E., Liu, J.Z., and Asta, M.D., Materials Science and Engineering A 463, 271 (2007).Google Scholar
10 Othens, P.J., Jenkins, M.L., and Smith, G.D.W.. Phil. Mag. A 70, 1 (1994).Google Scholar
11 Auger, P., Pareige, P., Akamatsu, M. and Blavette, D., J. Nucl. Mater. 225, 225 (1995).Google Scholar
12 Duparc, H.A. Hardouin, Dole, R.C., Jenkins, M.L. and Barbu, A., Phil. Mag. Lett. 71, 325 (1995).Google Scholar
13 Soisson, F.. Barbu, A., and Martin, G., Acta Mater. 44, 3789 (1996).Google Scholar
14 Zhang, C., Enomoto, M., Acta Mater. 54, 4183 (2006).Google Scholar
15 Liu, J.Z., Walle, A. van de, Ghosh, G., and Asta, M., Phys. Rev. B 72, 1 (2005).Google Scholar
16 Domain, C., Becquart, C.S., Phys. Rev. B 65, 024103 (2001).Google Scholar
17 Vincent, E., Becquart, C.S., and Domain, C., J. Nucl. Mater. 351, 88 (2006).Google Scholar
18 Soisson, F. and Fu, Chu-Chun, Phys. Rev. B 76, 214102 (2007).Google Scholar
19 Chen, L.H., Chin, T.S., and Hung, M., J. Appl. Phys. 64, 5962 (1988).Google Scholar
20 Soven, P., Phys. Rev. 156, 809 (1967); D.W. Taylor, Phys. Rev. 156, 1017 (1967); S. Kirkpatrick, B. Velicky, and H. Erenreich, Phys. Rev. B 1, 3250 (1970).Google Scholar
21 Turchi, P.E.A., Stocks, G.M., Butler, W.H., Nicholson, D.M., and Gonis, A., Phys. Rev. B 37, 5982 (1988); V. Drchal, J. Kudrnovsky, L. Udvardi, P. Weinberger, and A. Pasturel, Phys. Rev. B 45, 14 328 (1992).Google Scholar
22 Korringa, J., Physica 13, 392 (1947); W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).Google Scholar
23 Ruban, A.V. and Abrikosov, I.A., Rep. Prog. Phys. 71, 046501 (2008).Google Scholar
24 Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
25 Skriver, H.L. and Rosengaard, N.M., Phys. Rev. B 43, 9538 (1991); P.A. Korzhavyi, I.A. Abrikosov, B. Johansson, A.V. Ruban, and H.L. Skriver, Phys. Rev. B 59, 11693 (1999).Google Scholar
26 Ruban, A.V., Korzhavyi, P.A., and Johansson, B., Phys. Rev. B 77, 094436 (2008).Google Scholar
27 Becquart, C.S., Domain, C., Nucl. Instr. Methods Phys. Research B 202, 44 (2003).Google Scholar
28 Vincent, E., Becquart, C.S., Domain, C., Journal of Nuclear Materials 351, 88 (2006).Google Scholar
29 Perez, M., Perrard, F., Massardier, V., Kleber, X., Deschamps, A., Monestrol, H. de, Pareige, P. and Covarel, G., Philos. Mag. 85, 2197 (2005).Google Scholar
30 Tao, X., Landau, D.P., Schulthess, T.C., and Stocks, G.M., Phys. Rev. Lett. 95, 087207 (2005).Google Scholar
31 Zener, C., in: Phase Stability in Metals and Alloys, ed. by Rudman, P.S., Sringer, J., and Jaffee, R.I. (McGraw-Hill, New-York, 1967), p. 25.Google Scholar