Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T15:45:54.129Z Has data issue: false hasContentIssue false

Effect of interstitial concentration and heat treatment on microstructure and primary creep of investment cast Ti-47Al-2Nb-2Mn with 0.8v% TiB2

Published online by Cambridge University Press:  15 February 2011

Dong Yi Seo
Affiliation:
Dept. of Materials Science and Mechanics, Michigan State University, East Lansing, MI 48824.
T. R. Bieler
Affiliation:
Dept. of Materials Science and Mechanics, Michigan State University, East Lansing, MI 48824.
D. E. Larsen
Affiliation:
Howmet Corp. 1500 S. Warner St., Whitehall, MI 49461.
Get access

Abstract

Most research about creep has focused on minimum creep rate or stress rupture properties, but primary creep is important for practical applications. In this paper, we compare how interstitial content and heat treatments of shorter duration than used in past studies affect the microstructure and primary creep resistance of a particular alloy containing TiB2 particles. More time and temperature in heat treatment homogenizes the microstructure and reduces the scatter of creep times to 0.5% strain. Increasing interstitial content increases the time to 0.5% creep, and it stabilizes the a2 phase. Preliminary evidence for large mechanical twinning strains parallel to lamellar interfaces shortly following loading is provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, S.C. and Hall, E.L., MRS Symp. Proc., 133, 373, (1989).Google Scholar
2. Vasudevan, V.K., Stucke, M.A., Court, S.A. and Fraser, H.L., Phil. Mag. Lett., 59(6), 299, (1989),.Google Scholar
3. Vasudevan, V.K., Court, S.A., Kurath, P. and Fraser, H.L., Scripta Metall, 23(6), 907, (1989).Google Scholar
4. Aindow, M., Chaudkuri, K., Das, S. and Fraser, H.L., Scripta Metall., 24, 1105 (1990).Google Scholar
5. Sriram, S., Vasudevan, V.K. and Dimiduk, D.M., MRS Symp. Proc, 213, 375, (1991).Google Scholar
6. Tian, W.H. and Nemoto, M., Gamma Titanium Aluminides, ed. Kim, Y-W.,, Wagner, R., and Yamaguchi, M., (TMS, Warrendale, PA, 1995), p. 689.Google Scholar
7. Worth, B.D.. Jones, J.W. and Allison, J.E., Gamma Titanium Aluminides, eds. Kim, Y.W., Wagner, R., and Yamaguchi, M., (TMS, Warrendale, PA, 1995), p. 931.Google Scholar
8. Seo, D.Y., Bieler, T.R. and Larsen, D.E., Advances in the Science and Technology of Titanium Alloy Processing, eds. Weiss, I., Srinivasan, R., Bania, P., and Eylon, D., (TMS Warrendale, PA, 1996) in press.Google Scholar
9. Muraleedharan, K. and Pollock, T.M., unpublished research, PRET home page, http://titan.mems.cmu.edu/etch.html.Google Scholar
10. Yamauchi, S. and Shiraishi, H., Mater. Sci. Eng., A152, 283, (1992).Google Scholar
11. Yamaguchi, M. and Inui, H., Structural Intermetallics eds. Darolia, R. et al, (TMS, Warrendale, PA, 1993), p. 127.Google Scholar
12. Larsen, D.E., Kampe, S.L., Christodoulou, , MRS Symp. Proc, 194, 285, (1990).Google Scholar
13. Bieler, T.R. and Seo, D.Y., Deformation and Fracture of Ordered Intermetallic Materials, eds. Soboyejo, W.O., Fraser, H.L., Srivatsan, T.S., (TMS, Warrendale, PA 1996), in press.Google Scholar
14. Jin, Z. and Bieler, T.R., Phil Mag. A, 71, 925, (1995).Google Scholar
15. Feng, C.R, Michel, D.J. and Crowe, C.R., Scripta Metall., 23, 241246, (1989).Google Scholar
16. Luster, J. and Morris, M.A.. Metall. Trans. A, 26A, 17451756, (1995).Google Scholar