Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:41:45.890Z Has data issue: false hasContentIssue false

Effect of In-Situ Formation of Nanoscale γ-Al2O3 and AlN on Thermal Stability of Cryomilled Nanocrystalline Fe

Published online by Cambridge University Press:  15 February 2011

R.J. Perez
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92717
B. Huang
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92717
E.J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92717
Get access

Abstract

Cryogenic attritor milling (cryomilling) is used to synthesize nanocrystalline Fe-10wt.%Al powders. Following consolidation in a rigid die at 823 K and heat treatment for 1 hour at 1223 K, an average grain size of 16±7 nm is maintained. This level of thermal stability is shown to exceed that of pure Fe processed under identical conditions. The significant increase in thermal stability is attributed primarily to the presence of nanometer-scale γ-Al2O3 and AIN dispersoids formed during cryomilling and subsequent heat treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Suryanarayana, C., International Materials Reviews, 40, p. 41 (1995).Google Scholar
2 Koch, C.C., NanoStructured Mails., 2, p. 109 (1993).Google Scholar
3 Gutmanas, E.Y., Prog. Mat. Sci., 34, p. 261 (1990).Google Scholar
4 Rawers, J.C. and Doan, R.C., Metall. Trans. A, 25A, p. 381 (1994).Google Scholar
5 Luton, M.J., Jayanth, C.S., Disko, M.M., Matras, S., and Vallone, J., Mat. Res. Soc. Proc, 132, p. 79(1989).Google Scholar
6 Huang, B., Vallone, J., Klein, C.F., and Luton, M.J., Mat. Res. Soc. Symp. Proc, 273, p. 171 (1992).Google Scholar
7 Huang, B., Perez, R.J., Sharif, A. A., and Lavernia, E.J. in Proceedings of Processing and Properties of Nanocrystalline Materials. 1995. TMS Fall Meeting, Cleveland, OH: in press.Google Scholar
8 Metal Powder Industries Federation, Standard No. 42, Princeton, New Jersey, (1995).Google Scholar
9 Wriedt, H.A., Gokcen, N.A., and Nafziger, R.H., Bulletin Alloy Phase Diagrams, 8, p. 355 (1987).Google Scholar
10 Huang, B., Vallone, J., and Luton, M.J., NanoStructured Matls., 5, p. 631 (1995).Google Scholar
11 Huang, B., Perez, R.J., and Lavernia, E.J., Unpublished Research, 1995, University of California: Irvine, CA.Google Scholar
12 Weast, R.C., ed., CRC Handbook of Chemistry and Physics. (Boca Raton, Florida: CRC Press, Inc., 1995–96), D-51.Google Scholar
13 Gladman, T. and Dulieu, D., Metal Science, 8, p. 167 (1974).Google Scholar
14 Dogan, O.N., Michal, G.M., and Kwon, H.W., Metall. Trans. A, 23A, p. 2121 (1992).Google Scholar
15 McDowell, C.S. and Basu, S.N., Mat. Res. Soc. Proc., 362, p. 111 (1995).Google Scholar
16 Belotskii, A.V. and Yurkova, A.I., Metal Science and Heat Treatment, 33, p. 17 (1991).Google Scholar
17 Ogino, Y., Yamasaki, T., Atzumi, N., and Yoshioka, K., Materials Transactions, JIM, 34, p. 1212(1993).Google Scholar
18 Huang, B., Perez, R.J., and Lavernia, E.J. in MRS Fall Meeting. 1995. Boston, MA: in press.Google Scholar