Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:53:46.218Z Has data issue: false hasContentIssue false

Effect of Granularity on CuInSe2 Solar Cell Response

Published online by Cambridge University Press:  28 February 2011

James R. Sites*
Affiliation:
Department of Physics, Colorado State University, Fort Collins, CO 80523
Get access

Abstract

Polycrystalline CuInSe2 solar cells, fabricated by evaporation or by selenization of metal films, are granular and relatively porous. Grains are a few hundred nanometers in dimension, and hence about 1% of the atoms are at a surface. Despite the granularity, quantum efficiency is quite high and implies a diffusion length exceeding the grain dimension. The primary photovoltaic loss is excessive forward recombination current. The proposed model consists of single crystal CuInSe2 granules with an indium rich surface layer. When properly passivated, the otherwise uncoordinated indium bonds are terminated by oxygen. However, residual non-passivated crystalline surface states distributed throughout the depletion region provide the paths for enhanced recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mitchel, K., Eberspacher, C., Ermer, J., and Pier, D., Proc. 20th IEEE PV Spec. Conf., Las Vegas (IEEE, New York, 1988), p. 1384.Google Scholar
[2] Green, M. A., Blakers, A. W., Zhao, J., Milne, A. M., Wang, A., and Dai, X., IEEE Trans. Electron Devices ED–37, 331 (1990).Google Scholar
[3] Matson, R., Noufi, R., Ahrenkiel, R. K., Powell, R. C., and Cahen, D., Solar Cells 16, 495 (1986).Google Scholar
[4] ASTM Standard E892-82. See Hulsdrom, R., Bird, R., and Riordan, C., Solar Cells 15, 365 (1985).Google Scholar
[5] Devaney, W. E., Mickelson, R. A., and Chen, W. S., Proc. 18th IEEE PV Spec. Conf., Las Vegas (IEEE, New York, 1985), p. 1733.Google Scholar
[6] Sites, J. R. and Mauk, P. H., Solar Cells 27, 411 (1989).Google Scholar
[7] Miller, W. A. and Olsen, L. C., IEEE Trans. Electron Devices ED–31, 654 (1984).Google Scholar
[8] Goradia, C. and Ghalla-Goradia, M., Solar Cells 16, 611 (1986).Google Scholar
[9] Mauk, P. H., Tavakolian, H., and Sites, J. R., IEEE Trans. Electron Devices ED–37, 422 (1990).Google Scholar
[10] Dhere, N. G., Lourenco, M. C., Dhere, R. G., and Kazmerski, L. L., Solar Cells 16, 369 (1986).Google Scholar
[11] Isomura, S., Nagamatsu, A., Shinshara, K., and Aono, T., Solar Cells 16, 143 (1986).Google Scholar
[12] See Birkmire, R. W., DiNetta, L. C., Lasswell, P. G., Meakin, J. D., and Phillips, J. E., Solar Cells 16, 419 (1986).Google Scholar
[13] Mitchell, K. W., Eberspacher, C., Ermer, J. H., Pauls, K. L., and Pier, D. N., IEEE Trans. Electron Devices ED–37, 410 (1990).Google Scholar
[14] Zurcher, P., Nelson, A. J., Johnson, P., Lapeyre, G. J., and Noufi, R., Proc. 19th IEEE PV Spec. Conf., New Orleans (IEEE, New York, 1985), p. 955.Google Scholar
[15] Cahen, D. and Noufi, R., Appl. Phys. Lett. 54, 558 (1989).Google Scholar