No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
Polycrystalline CuInSe2 solar cells, fabricated by evaporation or by selenization of metal films, are granular and relatively porous. Grains are a few hundred nanometers in dimension, and hence about 1% of the atoms are at a surface. Despite the granularity, quantum efficiency is quite high and implies a diffusion length exceeding the grain dimension. The primary photovoltaic loss is excessive forward recombination current. The proposed model consists of single crystal CuInSe2 granules with an indium rich surface layer. When properly passivated, the otherwise uncoordinated indium bonds are terminated by oxygen. However, residual non-passivated crystalline surface states distributed throughout the depletion region provide the paths for enhanced recombination.