Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T18:31:56.874Z Has data issue: false hasContentIssue false

Effect of Fabrication Variables on the Performance of Zinc Oxide Metal-Semiconductor-Metal Photodetectors

Published online by Cambridge University Press:  01 February 2011

Tingfang Yen
Affiliation:
[email protected], SUNY-Buffalo, Electrical Enginnering, 861 Robin Rd Apt#E, Amherst, NY, 14228, United States
Dave Strome
Affiliation:
[email protected], AMBP Tech Corporation,, 201 Circle Drive North, Piscataway, NJ, 08854, United States
Sung Jin Kim
Affiliation:
[email protected], State University of New York at Buffalo, Electrical Enginnering, 332 Bonner Hall, Buffalo, NY, 14260, United States
Michael DiNezzaa
Affiliation:
[email protected], State University of New York at Buffalo, Electrical Enginnering, 332 Bonner Hall, Buffalo, NY, 14260, United States
Alexander N. Cartwright
Affiliation:
[email protected], State University of New York at Buffalo, Electrical Enginnering, 332 Bonner Hall, Buffalo, NY, 14260, United States
Wayne A. Anderson
Affiliation:
[email protected], State University of New York at Buffalo, Electrical Enginnering, 332 Bonner Hall, Buffalo, NY, 14260, United States
Get access

Abstract

The performance of ZnO metal-semiconductor-metal (MSM) photodetectors can be significantly influenced by modifications in the fabrication process. ZnO thin films were deposited onto silicon substrates by radio frequency magnetron sputtering and later annealed by conventional furnace, rapid thermal anneal or laser anneal. The photoluminescence (PL) analysis revealed that laser annealing at 250 mW/cm2 increased the 370 nm peak from 520 to 1700 a.u. and reduced the defect peak from 380 to 20 a.u. MSM photodetectors were fabricated using an interdigitated and parallel pattern. Values of current responsivity ranged from about 0.025 A/W to above 430 A/W depending upon fabrication conditions and design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zhuang, H. and Xue, S., EUR PHYS J-APPL PHYS 38, 107110 (2007).Google Scholar
2 Lu, Y. F., Ni, H. Q., Mai, Z. H., and Ren, Z. M., J APPL PHYS 88, 498502 (2000).10.1063/1.373685Google Scholar
3 Wei, X. Q., Zhang, Z. G., Liu, M., Chen, C. S., Sun, G., Xue, C. S., Zhuang, H. Z., and Man, B. Y., MATER CHEM PHYS 101, 285290 (2007).Google Scholar
4 Grasza, K., Lusakowska, E., Skupinski, P., Kopalko, K., Bak-Misiuk, J., and Mycielski, A., PHYS STATUS SOLIDI B 244, 14681472 (2007).Google Scholar
5 Yen, Tingfang, Li, Meiya, Chokshi, Nehal, Kim, Sung Jin, Cartwright, Alexander N., Jeong, Yongwoo, and Anderson, Wayne A., in Mater. Res. Soc. Symp. Proc.; Vol. 957(0957-K10-05) (2007).Google Scholar
6 Yen, Tingfang, Li, Meiya, Chokshi, Nehal, DeLeon, Robert L., Kim, Joondong, Tompa, Gary, and Anderson, Wayne A., in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on; Vol. 2 (2006), p. 16531656.10.1109/WCPEC.2006.279806Google Scholar
7 Li, Meiya and Anderson, Wayne A. Solid-State Electronics 51, 94–101 (2007).Google Scholar
8 Li, Meiya, Chokshi, Nehal, DeLeon, Robert L., Tompa, Gary, Anderson, Wayne A., THIN SOLID FILMS 515, 73577363 (2007).10.1016/j.tsf.2007.03.026Google Scholar
9 Lee, W. J., Cho, C. R., Cho, K. M., and Jeong, S. Y., J KOREAN PHYS SOC 47, S296–S299 (2005).Google Scholar
10 Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J., and Morkoc, H., J APPL PHYS, 98 (2005).Google Scholar